• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 10
  • 4
  • Tagged with
  • 31
  • 31
  • 22
  • 17
  • 15
  • 12
  • 10
  • 8
  • 8
  • 8
  • 7
  • 7
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Lithium-Rich Transition Metal Oxides as Positive Electrode Materials in Lithium-Ion Batteries

van Bommel, Andrew 02 November 2010 (has links)
Lithium-rich transition metal oxides are candidates for the next-generation lithium-ion battery positive electrode materials. They have a much higher first charge and low-rate cycling capacity compared to non-lithium rich transition metal oxides. In this thesis, the preparation of spherical and dense transition metal oxide was studied. The morphology and tap-density of the hydroxide precursor was found to be dependent on the coprecipitation reaction pH. The coprecipitation reaction in the presence of aqueous ammonia was studied by analyzing the relevant chemical equilibria. The electrochemistry of lithium-rich oxides was studied as a function of particle size. The apparent oxygen diffusion coefficients were estimated using the Atlung graph method and were determined to be several orders of magnitude lower than normal lithium deintercalation. Isothermal mass calorimetry measurements showed evidence of a local Jahn-Teller distortion in the MnO6 units during discharge. Other studies of the lithium-rich oxides were also carried out.
2

Studies on Sodium-containing Transition Metal Phosphates for Sodium-ion Batteries / ナトリウムイオン電池用ナトリウム含有遷移金属リン酸塩に関する研究

Nose, Masafumi 23 March 2016 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第19739号 / 工博第4194号 / 新制||工||1647(附属図書館) / 32775 / 京都大学大学院工学研究科物質エネルギー化学専攻 / (主査)教授 安部 武志, 教授 陰山 洋, 教授 作花 哲夫 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
3

STRUCTURAL AND ELECTROCHEMICAL STUDIES OF THE LI-MN-NI-O AND LI-CO-MN-O PSEUDO-TERNARY SYSTEMS

McCalla, Eric 09 December 2013 (has links)
The improvement of volumetric energy density remains a key area of research to opti-mize Li-ion batteries for applications such as extending the range of electric vehicles. There is still improvement to be made in the energy density in the positive elec-trode materials. The current thesis deals with determining the phase diagrams of the Li-Mn-Ni-O and Li-Co-Mn-O systems in order to better understand the structures and the electrochemistry of these materials. The phase diagrams were made through careful analysis of hundreds of X-ray di raction patterns taken of milligram-scale combinatorial samples. A number of bulk samples were also investigated. The Li-Mn-Ni-O system is of particular interest as avoiding cobalt lowers the cost of the material. However, this system is very complex: there are two large solid-solution regions separated by three two-phase regions as well as two three-phase regions. Comparing quenched and slow cooled samples shows that the system trans-form dramatically when cooled at rates typically used to make commercial materials. The consequences of these results are that much of the system must be avoided in order to guarantee that the materials remain single phase during cooling. This work should therefore impact signi cantly researchers working on composite electrodes. Two new structures were found. The first was Li-Ni-Mn oxide rocksalt structures with vacancies and ordering of manganese which were previously mistakenly identi ed as LixNi2xO2. The other new structure was a layered oxide with metal site vacancies allowing manganese to order on two superlattices. The electrochemistry of both these materials is presented here. Finally, the region where layered-layered composites form during cooling has been determined. These materials were long looked for along the composition line from Li2MnO3 to LiNi0.5Mn0.5O2 and the most significant consequence of the actual locations of the end-members is that one of the structures contains a high concentration of nickel on the lithium layer. Layered-layered nano-composites formed in this system are therefore not ideal positive electrode materials and it will be demonstrated that single-phase layered materials lead to better electrochemistry.
4

A Study on Enhanced Electrode Performance of Li and Na Secondary Batteries by Ionic Liquid Electrolytes / イオン液体によるリチウムおよびナトリウム二次電池の電極特性向上に関する研究

Hwang, Jinkwang 25 November 2019 (has links)
全文ファイル差し替え(2021.07.28) / 京都大学 / 0048 / 新制・課程博士 / 博士(エネルギー科学) / 甲第22132号 / エネ博第400号 / 新制||エネ||77(附属図書館) / 京都大学大学院エネルギー科学研究科エネルギー基礎科学専攻 / (主査)教授 萩原 理加, 教授 佐川 尚, 教授 野平 俊之 / 学位規則第4条第1項該当 / Doctor of Energy Science / Kyoto University / DFAM
5

Příprava a charakterizace elektrodových materiálů z elementární síry pro Li-ion akumulátory / Preparation and characterisation of electrode materials based on elementar sulphur for Li-ion cells

Jankulár, Tomáš January 2013 (has links)
This thesis deals with the preparation and characterization of electrode materials for Li-ion batteries based on elemental sulfur. The theoretical part is focused on the characteristics of Li-ion batteries, electrochemical reactions, the process of electrochemical lithiation of sulfur and solubility properties of intermediate polysulfides. The practical part of the thesis deals with the preparation of cathode materials for Li-ion cells with an active substance in the form of elemental sulfur. The prepared electrodes were investigated using cyclic voltammetry and galvanostatic cycling. Physical characterization by SEM and XRD was provided.
6

Études des phénomènes de mouillabilité et des cinétiques d’imprégnation des électrodes positives par l’électrolyte : application aux batteries Lithium-Ion / Study of wetting and impregnation phenomena of the positive electrodes by the electrolyte : application to Lithium-Ion batteries

Lacassagne, Elodie 16 July 2014 (has links)
Le contact entre l'électrode et l'électrolyte est primordial pour le bon fonctionnement d'une batterie Lithium-Ion. L'imprégnation de l'électrode positive par un électrolyte liquide a toujours été considérée comme totale, cependant les phénomènes ne sont pas exactement connus. Ainsi, ces travaux s'intéressent à l'influence de la composition de l'électrode positive (matière active et agent conducteur) sur cette imprégnation. Après une première étude des propriétés conductrices, électrochimiques et morphologiques d'électrodes présentant des formulations plus ou moins éloignées des formulations industrielles, une méthode utilisant l'équation de Washburn a été développée afin d'étudier l'imprégnation des pores modélisés par un ensemble de tubes capillaires. L'utilisation de l'hexadecane, considéré comme un liquide parfaitement mouillant, a permis de déterminer la taille effective des pores indépendamment de l'électrolyte, et celle-ci a pu être comparée à des résultats obtenus grâce à la méthode de thermoporosimétrie. Puis, les régimes de Washburn obtenus lors de la diffusion de l'électrolyte ont mis en évidence les cinétiques d'ascension. Par la suite, la méthode de Washburn a été utilisée afin de caractériser les propriétés d'imprégnation d'électrodes élaborées avec un nouveau liant et selon un procédé innovant s'affranchissant de l'utilisation de solvant. L'utilisation d'un additif permettant la création de porosité d'une part, et la réticulation du liant d'autre part permettent d'obtenir une imprégnation de l'électrolyte comparable à celle observée pour les électrodes fabriquées par voie solvant / The contact between the electrode and the electrolyte is essential for a Lithium-Ion battery functioning. The impregnation of a positive electrode by the electrolyte has always been considered as total; however the phenomena are not exactly known. Thus, in this work, the influence of the positive electrode composition (active material, conductive agent and binder) on the impregnation has been investigated. After a first study focusing on the conductive, electrochemical and morphological properties of the electrodes, with different types of formulation, a method using Washburn equation has been developed in order to study the impregnation of the electrode’s pores, which were modeled as capillary tubes. With the use of hexadecane, considered as a perfectly wetting liquid, the effective pore size has been determined and then compared to the results given by the thermoporosimetry method. Then, the kinetics of ascension have been identified with the Washburn regimes obtained with the diffusion of the electrolyte in the cathodes. Afterwards, Washburn method has been used in order to characterize the impregnation properties of electrodes elaborated with an innovative process without solvent. Thanks to the use of an additive allowing the creation of porosity in one hand and the reticulation of the binder in the other hand, an impregnation of these new electrode by the electrolyte has been considered as comparable to the one observed for the cathodes made with solvent
7

Electrochemical Characterization of Surface-State of Positive Thin-Film Electrodes in Lithium-Ion Batteries / リチウムイオン電池用正極薄膜電極の電気化学的表面状態解析

Inamoto, Jun-ichi, Inamoto, Junichi 24 July 2017 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第20630号 / 工博第4368号 / 新制||工||1679(附属図書館) / 京都大学大学院工学研究科物質エネルギー化学専攻 / (主査)教授 安部 武志, 教授 阿部 竜, 教授 作花 哲夫 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DGAM
8

Sodium Secondary Batteries Utilizing Multi-Layered Electrolytes Composed of Ionic Liquid and Beta-Alumina / イオン液体とベータアルミナからなる多層電解質を用いたナトリウム二次電池

Wang, Di 25 September 2023 (has links)
京都大学 / 新制・課程博士 / 博士(エネルギー科学) / 甲第24925号 / エネ博第467号 / 新制||エネ||87(附属図書館) / 京都大学大学院エネルギー科学研究科エネルギー基礎科学専攻 / (主査)教授 萩原 理加, 教授 佐川 尚, 教授 野平 俊之 / 学位規則第4条第1項該当 / Doctor of Energy Science / Kyoto University / DFAM
9

INVESTIGATION OF TRANSITION-METAL IONS IN THE NICKEL-RICH LAYERED POSITIVE ELECTRODE MATERIALS FOR LITHIUM-ION BATTERIES

Gao, Shuang 01 January 2019 (has links)
Layered lithium transition-metal oxides (LMOs) are used as the positive electrode material in rechargeable lithium-ion batteries. Because transition metals undergo redox reactions when lithium ions intercalate in and disintercalate from the lattice, the selection and composition of transition metals largely influence the electrochemical performance of LMOs. Recently, a Ni-rich compound, LiNi0.8Co0.1Mn0.1O2 (NCM811), has drawn much attention. It is expected to replace its state-of-the-art cousins, LiCoO2 (LCO) and LiNi1/3Co1/3Mn1/3O2 (NCM111), because of its higher capacity, lower cost, and reduced toxicity. However, the excess Ni, as a transition-metal element in NCM811, can cause structural and cycling instability. Starting from NCM811, I modified the composition of transition metals by two approaches: 1) introducing cobalt deficiency and 2) substituting Ni, Co, and Mn with Zr. Their influences on the phase, structure, cycling performance, rate capability, and ionic transport were investigated by a variety of characterization techniques. I found that cobalt non-stoichiometry can suppress Ni2+/Li+ cation mixing, but simultaneously promotes the formation of oxygen vacancies, leading to rapid capacity fade and inferior rate capability compared to pristine NCM811. On the other hand, Zr can reside on and expand the lattice of NCM811, and form Li-rich lithium zirconates on their surfaces. In particular, 1% Zr substitution can increase the stability of NCM811 and facilitate Li-ion transport, resulting in enhanced cycling durability and high-rate performance. My studies help improve the understanding of the effects of transition metals on the degradation of the Ni-rich layered positive electrode material and provide modification strategies to enhance its performance and durability for Li-ion battery applications.
10

Elaboration of novel sulfate based positive electrode materials for Li-ion batteries / Elaboration de nouveaux matériaux à base de sulfates pour l’électrode positive des batteries à ions Li

Sun, Meiling 12 December 2016 (has links)
Le besoin croissant de batteries à ions lithium dans notre société exige le développement de matériaux d'électrode positive, avec des exigences spécifiques en termes de densité énergétique, de coût et de durabilité. Dans ce but, nous avons exploré quatre composés à base de sulfate: un fluorosulfate - LiCuSO4F et une famille d'oxysulfates - Fe2O(SO4)2, Li2Cu2O(SO4)2 and Li2VO(SO4)2. Leur synthèse, structure et performances électrochimiques sont présentées pour la première fois. Étant électrochimiquement inactif, LiCuSO4F présente une structure triplite ordonnée qui est distincte des autres fluorosulfates. L'activité électrochimique des composés oxysulfate a été explorée face au lithium. Plus spécifiquement, Fe2O(SO4)2 délivre une capacité réversible d'environ 125 mA∙h/g à 3.0 V par rapport à Li+/Li0; Li2VO(SO4)2 et Li2Cu2O(SO4)2 présentent respectivement les potentiels les plus élevés de 4.7 V vs. Li+/Li0 parmi les composés à base de V et de Cu. Enfin, la phase Li2Cu2O(SO4)2 révèle la possibilité d'une activité électrochimique anionique dans une électrode positive polyanionique. Leurs propriétés physiques, telles que les conductivités ioniques et les propriétés magnétiques, sont également rapportées. Dans l'ensemble, les oxysulfates sont intéressants à étudier en tant qu'électrodes positives polyanioniques pour les batteries à ions lithium. / The increasing demand of our society for Li-ion batteries calls for the development of positive electrode materials, with specific requirements in terms of energy density, cost, and sustainability. In such a context, we explored four sulfate based compounds: a fluorosulfate – LiCuSO4F, and a family of oxysulfates – Fe2O(SO4)2, Li2Cu2O(SO4)2 and Li2VO(SO4)2. Herein their synthesis, structure, and electrochemical performances are presented for the first time. Being electrochemically inactive, LiCuSO4F displays an ordered triplite structure which is distinct from other fluorosulfates. The electrochemical activity of the oxysulfate compounds was explored towards lithium. Specifically, Fe2O(SO4)2 delivers a sustained reversible capacity of about 125 mA∙h/g at 3.0 V vs. Li+/Li0; Li2VO(SO4)2 and Li2Cu2O(SO4)2 respectively exhibit the highest potential of 4.7 V vs. Li+/Li0 among V- and Cu- based compounds. Last but not least, the Li2Cu2O(SO4)2 phase reveals the possibility of anionic electrochemical activity in a polyanionic positive electrode. Their physical properties, such as ionic conductivities and magnetic properties are also reported. Overall, this makes oxysulfates interesting to study as polyanionic positive electrodes for Li-ion batteries.

Page generated in 0.0559 seconds