Spelling suggestions: "subject:"most tensiones concrete"" "subject:"most tension concrete""
1 |
Post-Fire Assessment of Unbonded Post-Tensioned Concrete Slabs: Strand Deterioration and Prestress LossMacLean, Kevin J.N. 21 December 2007 (has links)
Unbonded post-tensioned concrete slabs have been widely used in Canada and the United States since the 1960s, as they allow increased span-to-depth ratios and excellent control of deflections compared to non-prestressed reinforced concrete flexural members. The satisfactory fire performance of unbonded post-tensioned concrete slabs in
North America was established by a series of standard fire tests performed in the United States during the 1960s. However, there is a paucity of data on the effect of elevated temperatures on cold-drawn prestressing steel, both in terms of post-fire residual mechanical properties and high-temperature stress relaxation, which can lead to significant prestress loss both during and after a fire.
A detailed and comprehensive literature review is presented that provides background on the residual mechanical properties of prestressing steel, as well as on the creep-relaxation behaviour experienced at elevated temperatures under stress. The results of two test series are discussed; the first examining the effects of elevated temperatures on the residual mechanical properties of prestressing steel exposed to elevated temperatures. The second test series examines the irrecoverable and significant loss of prestress force that results from steel relaxation and other thermal effects experienced during heating. A preliminary analytical model is presented, capable of predicting the change in prestress force experienced by a stressed strand under transient heating. The model is then compared with experimental elevated temperature relaxation data.
Finally, the analytical model developed and residual mechanical properties obtained through experimentation are used along with a pre-existing finite difference heat transfer model (developed for concrete slabs) to examine the effect of elevated temperature exposure on the residual flexural capacity of a typical unbonded post-tensioned example slab. Several parameters, such as heated length and concrete cover, are examined using the example structure. From this it was observed that, after one hour of exposure to a standard fire (ASTM E119), significant losses in effective prestress and moment capacity occurred even with the appropriate amount of concrete cover. This is a finding which is of the utmost practical importance to engineers engaged in the evaluation of fire damaged unbonded post-tensioned structures. / Thesis (Master, Civil Engineering) -- Queen's University, 2007-12-18 17:15:17.521 / Natural Sciences and Engineering Research Council of Canada, and the Department of Civil Engineering at Queen’s University
|
2 |
Refined Evaluation of Effective Prestress in the Varina-Enon BridgeTrehy, Sam 10 January 2024 (has links)
The Varina-Enon Bridge is a cable-stayed, post-tensioned segmental box girder bridge in Richmond, Virginia. A large flexural crack was noted by inspectors in July 2012 which prompted a number of investigations into the current condition of the bridge. Particular focus has been put on prestress losses which have a significant impact on the strength and serviceability of the bridge.
Previous work has been conducted to monitor the behavior of the bridge and to back-calculate effective prestress. This was done using field data from a long-term data collection system in the bridge as well as a finite element model which includes a staged-construction analysis. Creep and shrinkage are accounted for using the CEB-FIP '90 model code.
Effective prestress in the Varina-Enon Bridge is back-calculated using live load strain data from the long-term data collection system. Previous work has overestimated live load moment since the influence of the crack opening has not been accounted for. This research refines the methods used to determine live load moment from live load strain. Two new methods are developed based on influence lines matching crack gauge data during a live load event. The new methods are compared to the method used in previous studies. Results using two elastic moduli for concrete are compared for each method of live load moment calculation. Finally, back-calculated effective prestress values are compared against effective prestress from the finite element model.
Depending on the method used for live load moment calculation, back-calculated effective prestress ranged from 167.4 ksi to 170.8 ksi. Both new methods for live load moment calculation yielded slightly smaller values for effective prestress compared to the method used previously. Increasing the elastic modulus from 6000 ksi to 6200 ksi increased back-calculated effective prestress values from an average of 168.3 ksi to 168.6 ksi. For elastic moduli of 6000 ksi and 6200 ksi, the finite element model returned an effective prestress of 170.3 ksi and 170.8 ksi, respectively. / Master of Science / Prestressing in concrete uses steel tendons to apply a compressive force to a structure. This technique allows for stiffer and lighter structures with longer span lengths to be built. The force in the steel tendons decreases over time, and this is called prestress loss. Prestress losses can have a significant impact on the strength and service life of a structure, so estimating the magnitude of prestress loss is of great importance in prestressed concrete structures.
The Varina-Enon Bridge is a cable-stayed, prestressed concrete box-girder bridge in Richmond, Virginia. In July 2012, cracking was observed in the bridge, and this prompted several investigations into its performance. This research calculates effective prestress (prestress force leftover after prestress loss) in several ways. A long-term data collection system collects sensor data which is used to calculate effective prestress experimentally, and a computer model is used to determine effective prestress computationally.
Effective prestress results from sensor data are slightly smaller than results from the computer model. However, the differences in results are fairly small, and all values are within expectations, so it is concluded that the Varina-Enon Bridge has not experienced more than expected prestress losses.
|
3 |
Laminar cracking in post-tensioned concrete nuclear containment buildingsDolphyn, Bradley P. 27 May 2016 (has links)
As a critical public safety-related structure, the long-term integrity of post-tensioned concrete containment buildings (PCCs) is necessary for continued operation of the reactors they house. In 2009, during preparations for a steam generator replacement, extensive subsurface laminar cracking was identified in a portion of the Crystal River 3 (CR3) PCC in Florida, and the plant was permanently shut down in 2013. This study investigates potential contributing factors to the identified cracking with particular focus on the effects of high early-age temperatures on the cracking risk of the concrete, on the development of the concrete properties, and on the late-age structural behavior of the concrete. Two planar, full-scale mock-ups of a portion of the CR3 PCC were constructed and instrumented with temperature and strain gauges to monitor the thermal and mechanical behavior during representative concrete curing and post-tensioning loading. Standard- and match-cured concrete specimens were tested for determination of the time- and temperature-dependent development of thermal and mechanical concrete properties, and hydration parameters were determined for the mock-up cement paste for modeling the heat generation in the concrete. These properties and parameters were utilized in 3D finite element analysis of the mock-ups in COMSOL Multiphysics and compared with experimental results. Non-destructive evaluation via shear wave tomography was conducted on the mock-ups to identify flaws and determine the effectiveness of the methods for identifying delaminations between post-tensioning ducts approximately 10 inches beneath the concrete surface. Though early-age thermal stresses were determined not to have caused cracking in the mock-ups, the high early-age concrete temperatures resulted in decreased late-age mechanical properties that were shown to contribute to greater concrete cracking risk when the mock-up was post-tensioned. Tensile stresses exceeding the tensile strength of the concrete were identified along the post-tensioning ducts when biaxial post-tensioning loads were applied in finite element analysis, but the stresses decreased rapidly with increased distance from the ducts. Through parametric modeling, increasing the tensile strength of the concrete was identified as an effective means of reducing the cracking risk in PCCs. Additionally, relationships between the mechanical properties for the standard- and match-cured specimens were identified that could enable prediction of in-place or match-cured concrete properties based only on the results of tests on fog-cured specimens.
|
4 |
Concreto auto-adensável: caracterização da evolução das propriedades mecânicas e estudo da sua deformabilidade por solicitação mecânica, retração e fluência. / Self-compacting concrete: characterization of the evolution of mechanical properties and study of its deformability under mechanical load, shrinkage and creep.Marques, Ana Carolina 29 April 2011 (has links)
O concreto auto adensável (CAA) é um material novo cujas propriedades mecânicas precisam ser estudadas. Ele apresenta em sua composição maior quantidade de argamassa e agregados graúdos de menores dimensões, que podem torná-lo mais deformável que o concreto convencional. Em contrapartida, o melhor empacotamento das partículas no estado fresco do CAA e a sua maior resistência (para uma mesma relação a/c) pode atuar no sentido oposto. Além disso, os modelos de previsão disponíveis na norma brasileira não levam em consideração os concretos especiais. O objetivo deste trabalho é verificar se modelos de previsão disponíveis na literatura são adequados para prever a fluência e a retração do CAA. Este estudo envolve aspectos de sua caracterização por meio de ensaios em laboratório, de retração, de fluência e de outras propriedades mecânicas como resistência à compressão, resistência á tração e módulo de elasticidade. Para o ensaio de fluência foram avaliadas as influências das condições ambientais (através de corpos de prova mantidos em ambiente controlado e sem controle de umidade e temperatura) e idade de carregamento. A partir dos resultados obtidos experimentalmente, foi feita a sua comparação com os modelos de previsão do ACI, EC2, NBR, B3 e GL. O estudo da deformação do CAA também foi feito por meio da monitoração de uma viga protótipo protendida, seguida da comparação das deformações medidas com as obtidas por um programa de elementos finitos. A partir dos resultados experimentais, observa-se que dentre os modelos de previsão de fluência e retração estudados, o que mais se adéqua aos resultados obtidos experimentalmente, é o fornecido pelo ACI e GL. A utilização do modelo de previsão do ACI pelo programa de elementos finitos gerou bons resultados de previsão de deformações quando comparados com os resultados medidos. Em relação à função de fluência, nota-se que a norma brasileira é adequada para o concreto estudado. / Self-compacting concrete (SCC) is a new material and its mechanical properties have yet to be studied. It has a higher amount of mortar and smaller coarse aggregates which make it more deformable. On the other hand, the packing of the particles in fresh SCC and its larger strength (at a constant water/cement ratio) may act in the opposite way. Besides, the prediction models provided by the Brazilian Code do not take special concretes into account. The main objective of this work is to verify if the creep and shrinkage prediction models available in the literature can predict those properties of a SCC. This study involves aspects of its characterization by tests in laboratory of creep, shrinkage and other mechanical properties, such as compressive strength, splitting tensile strength and modulus of elasticity. For the creep test, the influence of environmental conditions (for specimens kept in an environment with and without temperature and humidity controlled) and age at loading were evaluated. From the obtained experimental results, a comparison was made to the values obtained from the ACI, EC2, NBR, B3 and GL prediction models. The deformability of SCC was analyzed by monitoring a post-tensioned beam prototype followed by the comparison of the measured deflection and strain long the time to those obtained from a finite element model. From the obtained experimental results of creep and shrinkage, the most adequate prediction models are the ACI and GL models. The use of the ACI model with the finite element method produced good results when compared to the experimental measurements of deflection and strain of the prototype beam. With respect to the compliance creep function, it can be noticed that the model provided by the Brazilian Code is adequate to the studied SCC.
|
5 |
Bridge System with Precast Concrete Double-T Girder and External Unbonded Post-tensioningLi, Yang Eileen 06 April 2010 (has links)
This thesis compares the consumption of primary superstructure material in a conventional single span CPCI system with those of double-T alternatives. The CPCI system is currently the preferred bridge type for short and medium spans in Canada, despite its relatively inefficient use of materials due to imperfect live load sharing among multiple parallel girders. The double-T alternatives utilize slender double-T cross-sections, fully precast segments, and post-tensioning in both longitudinal and transverse direction.
The economy of the CPCI and double-T systems is compared within the framework of four sample designs. The results indicate that the double-T systems are in general more efficient than the CPCI system and have the potential to achieve better economy.
|
6 |
Bridge System with Precast Concrete Double-T Girder and External Unbonded Post-tensioningLi, Yang Eileen 06 April 2010 (has links)
This thesis compares the consumption of primary superstructure material in a conventional single span CPCI system with those of double-T alternatives. The CPCI system is currently the preferred bridge type for short and medium spans in Canada, despite its relatively inefficient use of materials due to imperfect live load sharing among multiple parallel girders. The double-T alternatives utilize slender double-T cross-sections, fully precast segments, and post-tensioning in both longitudinal and transverse direction.
The economy of the CPCI and double-T systems is compared within the framework of four sample designs. The results indicate that the double-T systems are in general more efficient than the CPCI system and have the potential to achieve better economy.
|
7 |
Concreto auto-adensável: caracterização da evolução das propriedades mecânicas e estudo da sua deformabilidade por solicitação mecânica, retração e fluência. / Self-compacting concrete: characterization of the evolution of mechanical properties and study of its deformability under mechanical load, shrinkage and creep.Ana Carolina Marques 29 April 2011 (has links)
O concreto auto adensável (CAA) é um material novo cujas propriedades mecânicas precisam ser estudadas. Ele apresenta em sua composição maior quantidade de argamassa e agregados graúdos de menores dimensões, que podem torná-lo mais deformável que o concreto convencional. Em contrapartida, o melhor empacotamento das partículas no estado fresco do CAA e a sua maior resistência (para uma mesma relação a/c) pode atuar no sentido oposto. Além disso, os modelos de previsão disponíveis na norma brasileira não levam em consideração os concretos especiais. O objetivo deste trabalho é verificar se modelos de previsão disponíveis na literatura são adequados para prever a fluência e a retração do CAA. Este estudo envolve aspectos de sua caracterização por meio de ensaios em laboratório, de retração, de fluência e de outras propriedades mecânicas como resistência à compressão, resistência á tração e módulo de elasticidade. Para o ensaio de fluência foram avaliadas as influências das condições ambientais (através de corpos de prova mantidos em ambiente controlado e sem controle de umidade e temperatura) e idade de carregamento. A partir dos resultados obtidos experimentalmente, foi feita a sua comparação com os modelos de previsão do ACI, EC2, NBR, B3 e GL. O estudo da deformação do CAA também foi feito por meio da monitoração de uma viga protótipo protendida, seguida da comparação das deformações medidas com as obtidas por um programa de elementos finitos. A partir dos resultados experimentais, observa-se que dentre os modelos de previsão de fluência e retração estudados, o que mais se adéqua aos resultados obtidos experimentalmente, é o fornecido pelo ACI e GL. A utilização do modelo de previsão do ACI pelo programa de elementos finitos gerou bons resultados de previsão de deformações quando comparados com os resultados medidos. Em relação à função de fluência, nota-se que a norma brasileira é adequada para o concreto estudado. / Self-compacting concrete (SCC) is a new material and its mechanical properties have yet to be studied. It has a higher amount of mortar and smaller coarse aggregates which make it more deformable. On the other hand, the packing of the particles in fresh SCC and its larger strength (at a constant water/cement ratio) may act in the opposite way. Besides, the prediction models provided by the Brazilian Code do not take special concretes into account. The main objective of this work is to verify if the creep and shrinkage prediction models available in the literature can predict those properties of a SCC. This study involves aspects of its characterization by tests in laboratory of creep, shrinkage and other mechanical properties, such as compressive strength, splitting tensile strength and modulus of elasticity. For the creep test, the influence of environmental conditions (for specimens kept in an environment with and without temperature and humidity controlled) and age at loading were evaluated. From the obtained experimental results, a comparison was made to the values obtained from the ACI, EC2, NBR, B3 and GL prediction models. The deformability of SCC was analyzed by monitoring a post-tensioned beam prototype followed by the comparison of the measured deflection and strain long the time to those obtained from a finite element model. From the obtained experimental results of creep and shrinkage, the most adequate prediction models are the ACI and GL models. The use of the ACI model with the finite element method produced good results when compared to the experimental measurements of deflection and strain of the prototype beam. With respect to the compliance creep function, it can be noticed that the model provided by the Brazilian Code is adequate to the studied SCC.
|
8 |
Post-tensioned stress ribbon systems in long-span roofs : Case study: Västerås Travel CenterAhmed, Samih, Minchot, Guayente January 2018 (has links)
The stress ribbon system has numerous advantages, that includes but are not limitedto: increasing overall stiffness, control deflections and reduction of materialsconsumption, which in turn, reduces the load and the cost. Nevertheless, its use isusually limited to bridges, in particular, pedestrian bridges; this can be attributedto the insufficient space that buildings’ usually have for end supports, or/and backstayedcables, that can accommodate the expected high pull-out forces occuring atthe cables’ ends. In this work, the roof of Västerås Travel Center, which will become one of the longestcable suspended roofs in the world, was chosen as a case study. The aim was toinvestigate the optimal technique to model the post-tensioned stress ribbon systemfor the roof structure using SAP2000, and to assess any possible reduction in thepull-out forces, deflections and concrete stresses. Subsequently, a conventional cablesuspended roof was simulated, using SAP2000, and compared to the post-tensionstress ribbon system in order to examine the potential of the latter. Moreover,the effects of temperature loads and support movements on the final design loadswere examined. Based on the study, a few practical recommendations concerningthe construction method and the iterative design process, required to meet thearchitectural geometrical demands, are stated by the authors. The results showed that the post-tensioned stress ribbon system reduces the concretestresses, overall deflections, and more importantly, reduces the pull-out forces by upto 16%, which substantially reduces the design forces for the support structures.The magnitude of these reductions was found to be highly correlated to the appliedprestressing force, making the size of the prestressing force a key factor in the design. / Konstruktioner med spännbandsystem bestående av bärande huvudkablar medpålagda plattor, ofta av betong, har många fördelar. Dessa fördelar inkluderarmen begränsas inte till ökad totalt styvhet, kontrollerade nedböjningar och reduceradmaterialförbrukning, vilket minskar lasten och kostnaden. Deras användningär dock vanligen begränsad till broar, särskilt gång- och cykelbroar, där det finnsutrymme för att förankra de höga utdragskrafterna från huvudkablarna. Motsvarandeutrymme finns sällan i byggnader. I det föreliggande arbetet har taket till Västerås Resecentrum valts ut som studieobjekt.Taket kommer att bli ett av väldens längsta kabelburna takkonstruktion.Syftet är att undersöka den optimala tekniken för att modellera ett efterspänt spännbandsystemför taket med hjälp av FE-programmet SAP2000 och att bedöma eventuellaminskningar på utdragskrafter, nedböjningar och betongspänningar. Däreftermodellerades en konventionell kabelburen takkonstruktion med SAP2000, och detjämfördes med det efterspända spännbandsystemet för att undersöka fördelarna avdet sistnämnda. Dessutom har effekten av temperaturlasten och upplagsrörelserundersökts på den slutliga modellen. Slutligen ges några praktiska rekommendationerom byggteknik och en iterativ dimensioneringsprocess som är nödvändig förarkitekturgestaltning och dess krav på geometri. Resultaten visar att det efterspända spännbandsystemet gav lägre betongspänningar,mindre totaltnedböjning, och ännu viktigare, mindre utdragskrafter. Krafterna minskade16%, vilket gav en minskning av konstruktionens horisontella upplagsreaktion.Storleken på reduktionen var direkt proportionell mot spännkraften, så förspänningär en nyckelfaktor vid dimensioneringen.
|
9 |
Effective Prestress Evaluation of the Varina-Enon Bridge Using a Long-Term Monitoring System and Finite Element ModelBrodsky, Rachel Amanda 22 July 2020 (has links)
The Varina-Enon Bridge is a cable-stayed, precast, segmental, post-tensioned box girder bridge located in Richmond, Virginia. Inspectors noticed flexural cracking in July of 2012 that prompted concerns regarding long-term prestress losses in the structure. Prestress losses could impact the future performance, serviceability, and flexural strength of the bridge. Accurately quantifying prestress losses is critical for understanding and maintaining the structure during its remaining service life.
Long-term prestress losses are estimated in the Varina-Enon Bridge using two methods. The first utilizes a time-dependent staged-construction analysis in a finite element model of the full structure to obtain predicted prestress losses using the CEB-FIP '90 code expressions for creep and shrinkage. The second method involves collecting data from instrumentation installed in the bridge that is used to back-calculate the effective prestress force.
The prestress losses predicted by the finite element model were 44.9 ksi in Span 5, 47.8 ksi in Span 6, and 45.3 ksi in Span 9. The prestress losses estimated from field data were 50.0 ksi in Span 5, 48.0 ksi in Span 6, and 46.7 ksi in Span 9. The field data estimates were consistently greater than the finite element model predictions, but the discrepancies are relatively small. Therefore, the methods used to estimate the effective prestress from field data are validated. In addition, long-term prestress losses in the Varina-Enon Bridge are not significantly greater than expected. / Master of Science / Post-tensioned concrete uses stressed steel strands to apply a precompression force to concrete structures. This popular building technology can be used to create lighter, stiffer structures. Over time, the steel strands experience a reduction in force known as prestress losses. Accurately quantifying prestress losses is critical for understanding and maintaining a structure during its remaining service life.
The Varina-Enon Bridge is a cable-stayed, prestressed box girder bridge located in Richmond, Virginia. Inspectors noticed cracking in July of 2012 that prompted concerns regarding long-term prestress losses in the structure. Prestress losses were estimated using two methods. The first method utilized a computer model of the full bridge. The second method used data from sensors installed on the bridge to back calculate prestress losses.
It was found that the prestress losses estimated from field data were slightly greater than, but closely aligned with, the computer model results. Therefore, it was concluded that the Varina-Enon Bridge has not experienced significantly more prestress losses than expected.
|
10 |
Long-Term Monitoring and Evaluation of the Varina-Enon BridgeDahiya, Ankuj 30 March 2021 (has links)
To make sound decisions about the remaining life of a structure, the precise calculation of the prestress losses is very important. In post-tensioned structures, the prestress losses due to creep and shrinkage can cause serviceability issues and can reduce flexural capacity.
The Varina-Enon Bridge is a cable-stayed, precast, segmental, post-tensioned box girder bridge located in Richmond, Virginia. Observation of flexural cracks in the bridge by inspectors promoted a study regarding long-term prestress losses in the structure. For understanding and sustaining the structure throughout its remaining service life, accurately quantifying prestress losses is important.
Two approaches are used to predict long-term prestress losses on the Varina-Enon Bridge. The first approach involves a finite element computer model of the bridge which run a timedependent staged-construction analysis to obtain predicted prestress losses using the CEB-FIP '90 code expressions for creep and shrinkage. The second approach involves the compilation of data from instrumentation mounted in the bridge to back calculate the effective prestress force.
The analysis using the computer model predicted the prestress losses as 44.6 ksi in Span 5, 47.9 ksi in Span 6, 45.3 ksi in Span 9, and 45.9 ksi in Span 11. The prestress losses estimated from field data were 50.0 ksi in Span 5, 48.0 ksi in Span 6, 46.7 ksi in Span 9, and 49.1 ksi in Span 11. It can be seen that relative to the results of field data estimations, the finite element analyses underestimated prestress loss, but given the degree of uncertainty in each form of estimation, the results are considered to fit well. / Master of Science / In order to apply a precompression force to concrete structures, post-tensioned concrete employs stressed steel strands. To construct lighter, stiffer structures, this popular building technology can be used. The steel strands undergo a reduction in force known as prestress losses over time. To make good decisions about the remaining life of a structure, the precise calculation of the prestress losses is very important.
The Varina-Enon Bridge is a post-tensioned concrete box-girder bridge in Richmond Virginia. In July of 2012, observation of flexural cracks in the bridge by the inspectors promoted a study regarding long-term prestress losses in the structure. Two techniques are used to predict long-term prestress losses for this bridge. A computer model of the bridge is used in the first method to calculate losses using the design code. In order to measure prestress losses, the second technique used data from sensors mounted on the bridge.
It was found that the estimation of losses closely matched those predicted at the time of the bridge construction and the computer model results. Based on this the final conclusion is made that the prestress loss in the Varina-Enon Bridge is not significantly more than expected.
|
Page generated in 0.0988 seconds