Spelling suggestions: "subject:"postharvest technology"" "subject:"northarvest technology""
31 |
Management of avocado postharvest physiology.Blakey, Robert John. January 2011 (has links)
Avocados are an important horticultural crop in South Africa, especially in the provinces of
KwaZulu-Natal, Mpumalanga and Limpopo. The distance to traditional export markets,
phytosanitary restrictions to lucrative markets such as China, the USA and Japan and
increased competition in the European market have challenged the South African avocado
industry. The industry has responded with improved logistics and shipping, a co-ordinated
market access program and a global system to co-ordinate exports of avocados to the
European market. To remain competitive on the global market, further improvements and
innovations are required to improve the efficiency of postharvest operations. These
improvements and innovations should be guided by a greater understanding of postharvest
physiology. Avocados are a relatively new export crop, so there is still much to be learnt about
avocado postharvest physiology and the optimisation of postharvest management. In this
regard, reduced temperature storage (1°C) and modified humidity packaging (MHP) were
investigated for their effect on fruit physiology and quality, the effect of a water- and ABA-infusion
on ripening was examined and the effect of a cold chain break on fruit physiology and
quality determined; near-infrared spectroscopy was also examined for its potential for its use
in the avocado industry.
As an initial study, the relationships between individual sugars, protein and oil were
studied to understand the changes in avocado fruit during ripening. It was found that
mannoheptulose and perseitol were the predominant sugars at harvest, but declined to very
low levels during the first 10 days postharvest. The concentrations of glucose and fructose
increased, while sucrose declined slightly during ripening. The concentration of protein
increased sigmoidally during ripening, reflecting the increase in the ripening enzymes,
particularly cellulase and polygalacturonase. The oil content fluctuated slightly during
ripening. It is suggested that mannoheptulose and perseitol are important carbon and energy
sources during ripening. Glucose concentration was also found to increase earlier in fast
ripening fruit compared to slow ripening fruit, which is related to increased cellulase activity
and may be related to the ABA functioning.
Thereafter, storage and ripening trials in two consecutive seasons showed that 1°C
storage and the use of MHP for 28 days reduced mass loss, water loss, ethylene production,
respiration, softening and heptose consumption, without appreciably affecting fungal rots,
physiological disorders or external chilling injury, compared to fruit stored at 5.5°C and
regular atmosphere respectively. Also, the storage of fruit in MHP delayed the rise in the
activity of cellulase during ripening, compared to fruit not stored in MHP, but there was no
significant difference in the peak activity of cellulase, polygalacturonase or pectin
methylesterase.
In a separate experiment, fruit ripening was significantly affected by the infusion of ABA
in an aqueous solution. Water slightly reduced the variation in ripening while ABA reduced
the time to ripening and the variation; it is suggested that water stress and ABA are
intrinsically involved in the ripening processes and may act as a ripening trigger. The water
concentration in fruit was measured non-destructively using reflectance NIR; this model was
used to determine the maturity of fruit and the loss of water during cold storage.
In the cold chain break experiment, it was found that although fruit recovered after a
cold chain break, in terms of ethylene production and respiration, there was a loss in quality
because of severe shrivelling as a result of increased water loss. Fruit that were stored at 1°C
were generally of a better quality at ripeness, if the cold chain was broken, compared to fruit
stored at 5.5°C. In a follow-up experiment, it was found that significant changes occurred in
avocado physiology over a 6h period. The respiration rate of fruit significantly increased after
4h at room temperature and mannoheptulose declined by 32% in control fruit and by 16% in
ethephon-treated fruit after 6h. This demonstrates the potential for quality loss in a short
amount of time.
Furthermore, a model of avocado ripening is proposed, outlining the role of water, ABA,
ethylene, respiration, ripening enzymes and individual sugars. This study has contributed to
the understanding of avocado postharvest physiology and should aid in better management of
avocados for improved fruit quality and consumer satisfaction. / Thesis (Ph.D.Agric.)-University of KwaZulu-Natal, Pietermaritzburg, 2011.
|
32 |
Effect of postharvest silicon application on 'hass' avocado (Persea americana Mill.) fruit quality.Kaluwa, Kamukota. January 2010 (has links)
The South African avocado industry is export-orientated with forty percent of total
production sold overseas. The avocado fruit is a highly perishable product with a
relatively high rate of respiration which results in the quick deterioration of fruit
quality. Good phytosanitary procedures are a necessity in ensuring good product
quality. Due to the threat of pests and diseases becoming resistant to the
conventional chemicals currently used to control them, there has been a great
need to diversify from their usage.
Silicon (Si), being the second most abundant element (28%) in the earth’s crust
after oxygen, is a major constituent of many soils and has been associated with
disease resistance in plants for a long time. It has been used in a number of crop
species to provide resistance against pathogenic agents. In some horticultural
crops Si has been found to offer protection against fungal infections by
strengthening cell walls, thus making it more difficult for the fungi to penetrate and
colonize the plant. The aim of this research was to investigate the effects of postharvest
silicon application on the quality of ‘Hass’ avocado fruit. The specific
objectives included investigating the effect of silicon on the ripening pattern as well
as the metabolic physiology of the avocado fruit.
Avocado fruit were obtained from two locations in the KZN Midlands (Everdon
Estate in Howick and Cooling Estate in Wartburg). Fruit were treated with different
forms of Si (potassium silicate (KSil), calcium silicate (CaSil), sodium silicate
(NaSil) and Nontox-silica® (NTS)) at concentrations ranging from 160 ppm to 2940
ppm. After dipping for 30 minutes in the silicon treatments, the fruit were stored at
-0.5°C, 1°C, 5°C or at room temperature (25°C). Energy dispersive x-ray (EDAX)
analysis was then conducted on the exocarp and mesocarp tissues to determine
the extent of silicon infiltration within each treatment. Firmness measurements,
ethylene evolution and CO2 production were recorded as fruit approached
ripening. The CO2 production of fruit that were stored at room temperature was
analysed daily until they had fully ripened, while fruit from cold storage were
removed weekly to measure respiration. Mesocarp tissue from each fruit was
extracted using a cork borer and subsequently freeze-dried and stored for
physiological analysis. The freeze-dried mesocarp tissue was then finely ground
and later analysed for sugar content, total anti-oxidant capacity (TAOC), total
phenolic (TP) content and phenylalanine ammonia lyase (PAL) activity using their
respective assays. Statistical analyses were carried out using GenStat® version
11 ANOVA. Treatment and storage temperature means were separated using
least significant differences (LSD) at 5% (P = 0.05). The experimental design in
this study was a split-plot design with the main effect being storage temperature
and the sub-effect being treatments. Each replication was represented by a single
fruit.
EDAX analysis revealed that Si passed through the exocarp into the mesocarp
tissue in fruit treated with high concentrations of silicon, i.e., KSil 2940 ppm.
Significant differences (P < 0.001) were observed in temperature means with
regards to firmness. Fruit treated with KSil and NTS only and stored at 5°C were
firmer than fruit stored at other temperatures. Fruits treated with Si in the form of
KSil 2940 produced the least amount of CO2, while non-treated fruits (Air) had the
highest respiration rate. Fruit stored at room temperature (25°C) produced
significantly higher amounts of CO2 and peaked much earlier than fruit stored at
other temperatures. Ethylene results showed that there were differences (P <
0.05) between temperature means with the highest net ethylene being produced
by fruit stored at 25°C. There were also significant differences amongst treatment
means (P < 0.001), with fruits treated with KSil 2940 ppm producing the least
ethylene.
There were significant differences (P < 0.001) in temperature means with regards
to the total phenolic concentration with fruits stored at 1°C having the highest TP
concentration (26.4 mg L-1 gallic acid). Fruit treated with KSil 2940 ppm had the
highest total phenolic concentration whilst the control fruit (Air and Water) had the
lowest. There were also differences (P < 0.05) in storage temperature means with
respect to the total antioxidant capacity. Fruit stored at -0.5°C had the highest
TAOC (52.53 μmol FeSO4.7H2O g-1 DW). There were no significant differences in
TAOC (P > 0.05) with regards to treatment means although fruit treated with KSil
2940 ppm and stored at -0.5°C showed the highest TAOC of 57.58 μmol
FeSO4.7H2O g-1 DW. With regards to the concentration of major sugars in
avocado, mannoheptulose and perseitol (mg g-1), no significant differences (P >
0.05) were observed in temperature means. However, fruit stored at -0.5°C had
the highest concentration of these C7 sugars compared with fruit stored at other
temperatures. There were significant differences in treatment means (P < 0.001)
showing that fruit treated with KSil 2940 ppm had the highest concentration of both
mannoheptulose (18.92 mg g-1) and perseitol (15.93 mg g-1) in the mesocarp
tissue.
Biochemical analyses showed differences (P < 0.05) in storage temperature
means with respect to PAL enzymatic activity. Fruit stored at 5°C had the highest
PAL activity (18.61 mmol cinnamic acid g-1 DW h-1) in the mesocarp tissue
compared with fruit stored at other temperatures. There were significant
differences in treatment means (P < 0.001) with regard to PAL activity. Fruit
treated with KSil 2940 ppm had the highest PAL activity (23.34 mmol cinnamic
acid g-1 DW h-1).
This research has demonstrated the beneficial effects, particularly applications of
2940 ppm Si in the form of KSil. This treatment successfully suppressed the
respiration rate of avocado fruit. Biochemical analyses of total antioxidants, total
phenolics and PAL activity in the mesocarp tissue have shown the usefulness of Si
in improving the fruit’s metabolic processes. The C7 sugars (D-mannoheptulose
and perseitol) also seem to be more prevalent in avocado fruit treated with Si
(particularly KSil 2940 ppm) than in non-treated fruit. This suggests that an
application of Si to avocado fruit can aid in the retention of vital antioxidants (C7
sugars). / Thesis (M.Sc.Agric.)-University of KwaZulu-Natal, Pietermaritzburg, 2010.
|
33 |
Postharvest physiology and effects of modified atmosphere packaging and anti-browning treatment on quality of pomegranate arils and aril-sac (CV. Bhagwa)Aindongo, Wilhelmina Vulikeni 04 1900 (has links)
Thesis (MScFoodSc)--Stellenbosch University, 2014. / ENGLISH ABSTRACT: Knowledge of postharvest quality attributes of minimally processed packaged fruit is essential in order to establish the optimum shelf life period. The aim of this study was to investigate the effects of Passive-modified atmosphere packaging (MAP) on the quality of minimally processed pomegranate (cv. Bhagwa) arils and aril-sacs. These began by understanding the physiological processes i.e. respiration and transpiration rates of the whole fruit, arils and aril-sacs. The respiration rates (RR) of whole fruit, aril-sacs and arils were studied at 5, 10, 15 and 22°C, and comparisons were made among these fruit fractions. A high RR was observed in aril-sacs compared to whole fruit and arils across all storage temperatures. A 74.5% decrease in RR was observed when storage temperature was reduced from 22°C to 5°C. A significant increase in RR occurred from day 3 of storage across all fruit fractions and storage temperatures. The transpiration rates (TR) of arils and aril-sacs were studied at storage conditions of 5, 10 and 15°C and 76, 86 and 96% relative humidity (RH), and was found to increase with increase in temperature and decrease in relative humidity, with lowest TR occurring in fruit fractions stored at 5°C and 96% RH showing lower TR. Arils had high TR compared to aril-sacs, and this may be related to high surface area to volume ratio of exposed arils. The effects of modified atmosphere packaging and application of anti-browning agents on quality of arils and aril-sacs stored at 5°C were studied. Compared to clamshell packaging, Passive-MAP using POLYLID® 107 polyethylene (PE) polymeric film showed greater positive effects in maintaining the quality and extends the shelf life of the arils and aril-sacs. Furthermore, the anti-browning agents used controlled browning on the cut-surfaces of the peel of the aril-sacs and reduced microbial growth in both arils and aril-sacs. When the effects of MAP and anti-browning were combined, aril-sacs stored better than arils. These treatments extended the shelf life of aril-sacs to 12 days while arils lasted up to 9 days.
The water vapour transmission rate (WVTR) of pomegranate fruit membrane was evaluated at cold storage (5°C, 90% RH) and room condition (18.7°C, 70% RH). A high WVTR occurred in membranes stored at room condition, compared to those stored at cold storage. Further studies are warranted to improve our understanding of the biophysical properties of pomegranate membranes in relation to possible exchange of water vapour and gases between the aril-sacs.
In summary, the use of MAP in combination with anti-browning agents showed a high potential in maintaining the quality of pomegranate arils and aril-sacs and consequently increase their shelf-life. / AFRIKAANSE OPSOMMING: Kennis van naoes- gehalte-eienskappe van minimaal geprosesseerde verpakte vrugte is essensieel ten einde optimum rakleeftyd te bepaal. Die doel van hierdie studie was om die gevolge van passiewe gemodifiseerde atmosfeerverpakking (GAV) op die gehalte van arils en arilsakkies van minimaal geprosesseerde granaat (kv. Bhagwa) te ondersoek. ʼn Aanvang is gemaak deur die fisiologiese prosesse, m.a.w. respirasie- en transpirasietempo’s van die hele vrugte, arils en arilsakkies, te begryp. Die respirasietempo’s (RT) van hele vrugte, arilsakkies en arils is by 5, 10, 15 en 22°C bestudeer, en vergelykings is getref tussen hierdie vrugdele. ʼn Hoë RT is waargeneem by arilsakkies in vergelyking met hele vrugte en arils oor alle bergingstemperature heen. ʼn Afname van 74.5% RT is waargeneem toe bergingstemperatuur van 22°C na 5°C verminder is. ʼn Beduidende toename in RT het van dag 3 van berging af oor alle vrugdele en bergingstemperature heen voorgekom. Die transpirasietempo’s (TR) van arils en arilsakkies is by bergingstoestande van 5, 10 en 15°C en 76, 86 en 96% relatiewe humiditeit (RH) bestudeer, en daar is bevind dat dit verhoog met ’n toename in temperatuur en ʼn afname in relatiewe humiditeit, met die laagste TR wat voorkom by vrugdele geberg by 5°C en 96% RH wat dus laer TR toon. Arils het hoë TR gehad in vergelyking met arilsakkies, en dit kan verband hou met die verhouding van hoë oppervlakarea tot volume blootgestelde arils. Die gevolge van gemodifiseerde atmosfeerverpakking en aanwending van middels vir die voorkoming van verbruining op gehalte van arils en arilsakkies geberg teen 5°C is bestudeer. In vergelyking met verpakking in toeknipbakkies (clamshell packaging), het passiewe GAV waarby POLYLID® 107 poliëtileen- (PE) polimeriese film gebruik is, groter positiewe gevolge by die behoud van gehalte getoon, en die rakleeftyd van die arils en arilsakkies is verleng. Daarbenewens het die middels vir die voorkoming van verbruining beheerde verbruining op die sny-oppervlakke van die skil van die arilsakkies gebruik en mikrobiese groei in beide arils en arilsakkies verminder. Toe die gevolge van GAV en die voorkoming van verbruining gekombineer is, het arilsakkies beter as arils geberg. Hierdie behandelings het die rakleeftyd van arilsakkies tot 12 dae verleng terwyl arils tot 9 dae gehou het.
Die waterdamptransmissiespoed (WDTS) van granaatvrugtemembraan is geëvalueer by koel berging (5°C, 90% RH) en kamertoestande (18.7°C, 70% RH). ʼn Hoë WDTS het voorgekom by membrane wat by kamertoestande geberg is in vergelyking met dié wat in koelbewaring geberg is. Verdere studies is geregverdig vir verbetering van ons begrip van die biofisiese eienskappe van granaatmembrane in verhouding met moontlike uitruiling van waterdamp en atmosfere tussen die arilsakkies.
|
34 |
Cooling and shipping studies on table grapes (Vitis vinifera L.)Ngcobo, Mduduzi E. K. 03 1900 (has links)
Thesis (MScAgric)--Stellenbosch University, 2008. / ENGLISH ABSTRACT: Fruit quality is the most important factor that determines prices for the fruit in the
international markets. Although different consumers perceive quality differently there are
quality variables that are always associated with poor quality by all consumers. In table
grapes (Vitis vinifera L.) these variables may include overall appearance, stem condition,
SO2 damage, decay, berry browning and shatter. The presence of these quality defects
negatively affects prices and most often results in quality claims.
Cooling is the most widely used method to reduce the postharvest loss of fruit quality. In
South Africa, most deciduous fruits including table grapes are forced air cooled to a
statutory pulp temperature of –0.5°C prior to shipping in an effort to preserve quality,
thus ensuring good market prices for the fruits. Despite these efforts, there are still quality
claims from the markets and this reduces the returns to the growers.
The objectives of this research were to: (i) see if cooling time can be reduced by cooling
to higher pulp temperatures of 1.5°C and 3°C without causing quality losses, thus
improving the throughput of the cold rooms; (ii) see if the problem of berry browning can
be alleviated by cooling grapes to higher pulp temperature, and (iii) see whether pallet
positioning in the cooling tunnels and reefer container affect quality.
The trends showed better quality when ‘Victoria’ and ‘Regal Seedless’ were forced air
cooled (FAC) to pulp temperatures of 1.5 °C and 3 °C as opposed to –0.5 °C. There were
no economic losses associated with pre-cooling grapes to pulp temperatures of 1.5 °C and
3 °C. There were no significant differences in berry browning related to pre-cooling
treatments. However, cooling time was reduced significantly. In most of the cooling
tunnels and reefer containers used in this trial, grape quality results showed no significant
differences between the positions in the stack and in reefer containers. However, in cases
where there were significant differences, the middle and the rear positions showed better
grape quality in terms of stem condition (dry and brown stems) than the front position
(near fan) in both the pre-cooling stack and reefer containers. The trends showed that the front is cooler than the back of the pre-cooling stack. The pulp
temperature differences between the front and rear positions in the reefer container were
as high as 1.23 °C. The trends also showed that the bottom layers of the pallets were
cooler than the top layers in the reefer container.
FAC to 3°C resulted in a constant reduction in percentage electrolyte leakage after 4
weeks of storage at –0.5°C, while FAC to 1.5°C, -0.5°C and static room cooling (control)
in some cases showed an initially low electrolyte leakage followed by an increase in
leakage after 4 weeks of storage.
FAC grapes to higher pulp temperatures of 3°C and 1.5°C could reduce the cooling time,
thereby improving the throughput of cold rooms. There was no clear evidence to suggest
that browning was due to pre-cooling practices. Both preharvest and postharvest
conditions need to be further investigated to better understand the problems of browning
in white table grapes. / AFRIKAANSE OPSOMMING: Vrugkwaliteit is ʼn kritiese faktor in die bepaling van pryse op die internasionale markte.
Alhoewel daar variasie voorkom tussen verbruikers in wat vrugkwaliteit is, bly sekere
aspekte altyd onveranderd. Ononderhandelbare kwaliteit aspekte in tafeldruiwe (Vitis
vinifera L.) sluit die algemene voorkoms, toestand van die trosstingels, SO2 skade,
bederf, korrel verbruining en los-korrels in. Indien enige van die kwaliteit-defekte
voorkom het dit ʼn negatiewe impak op die prys en lei gewoonlik tot gehalte eise.
Verkoeling word algemeen gebruik om die verlies van na-oes kwaliteit te verminder. Die
meeste sagtevrugte geproduseer in Suid Afrika (insluitend tafeldruiwe) ondergaan
geforseerde verkoeling tot ʼn statutêre pulptemperatuur van -0.5°C, voor verskeping.
Ondanks hierdie maatreëls om hoë pryse te verseker, is daar steeds kwaliteiteise in die
mark wat lei tot ‘n laer inkomste vir produsente.
Die navorsing het dus ten doel gehad om : (i) te bepaal of die tyd van verkoeling
verminder kan word, indien na hoër pulptemperature van 1.5°C en 3°C verkoel kan word,
sonder ‘n verlies in kwaliteit en sodoende die deurvloeitempo van die koelkamers
verhoog; (ii) om te bepaal of die voorkoms van korrelverbruining verlaag kan word
indien tot hoër pulp-temperature verkoel word, en (iii) laastens om te bepaal of posisie
van die palet in die verkoelingstonnel en verskepingshouer ʼn invloed het op
vrugkwaliteit.
Tendense toon dat ‘Victoria’ en ‘Regal Seedless’ kwaliteit beter was indien verkoel tot
pulptemperature van 1.5°C en 3°C in vergelyking met -0.5°C. Daar was geen
ekonomiese verliese waargeneem indien die hoër verkoelingstemperature gebruik is nie.
Alhoewel daar geen betekenisvolle verskille in korrelverbruining voorgekom het tussen
temperatuur behandelings nie is die verkoelingsperiode verkort. In die meeste van die
verskepingshouers, asook in posisies tydens geforseerde verkoeling is daar geen
betekenisvolle verskille waargeneem nie. In die gevalle waar daar egter wel betekenisvolle verskille voorgekom het, het die middel en agter posisies beter
vrugkwaliteit gehad as die voorste posisie tydens verkoeling asook houerverskeping.
Die palette aan die voorkant (naby die waaier) het as ʼn algemene tendens laer
temperature as in die agterkant van die verkoelingstonnel. Verskille in pulptemperature
tussen palette in die voor en agterkant van verskepingshouers was so hoog as 1.23°C. Die
temperatuurdata het uitgewys dat die onderste laag kartonne neig om by ‘n laer
temperatuur te wees as die boonste lae kartonne tydens houerverskeping.
Geforseerde verkoeling teen 3°C het gelei tot ‘n afname in persentasie elektrolietlekkasie
na 4 weke van verkoeling teen -0.5°C. Terselfdertyd het geforseerde verkoeling tot 1.5°C
en -0.5°C asook statiese verkoeling (kontrole) in sekere gevalle gelei tot ‘n laer
aanvanklike uitlek van elektrolietlekkasie, gevolg deur ʼn verhoging na 4 weke opberging.
Geforseerde verkoeling van tafeldruiwe tot pulptemperature van 1.5°C en 3°C verkort die
verkoelingstyd en verhoog dus die deurvloeitempo in die verkoelingskamers. Daar was
gedurende die studie geen duidelike bewyse gevind dat korrelverbruining voorkom as
gevolg van verkoelingspraktyke nie. Beide voor en na-oes praktyke sal verder ondersoek
moet word om die invloed daarvan te bepaal op die verbruining van wit tafeldruiwe.
|
35 |
Effects of packaging and postharvest cooling on quality of table grapes (Vitis vinifera L.)Du Plessis, S. F. (Stephanus Francois) 12 1900 (has links)
Thesis (MScAgric)--Stellenbosch University, 2003. / ENGLISH ABSTRACT: The table grape industry uses rapid cooling and packaging to protect grapes from desiccation
and decay. Numerous packaging methods and combinations are used in the industry with
each having their own advantages and disadvantages.
Inferior postharvest grape quality can usually be ascribed to either deficient or excessive
moisture in the carton. Berry split, decay and S02 damage are all disorders that are either
caused or aggravated by wet berries in conjunction with elevated temperature. On the other
hand, grapes that are exposed to desiccating conditions will develop brown stems and cause
ineffective control by S02 gas generators. Moisture management is governed by perforated
or non-perforated liners and/or by placing moisture absorbing materials inside the liners. To
find the optimum liner perforation or moisture sheet combination, 'Thompson Seedless' and
'Red Globe' (Vitis vinifera Linnaeus) table grape quality was evaluated in various trials.
The investigation of non-perforated liners compared to liners with different degrees of
perforation concluded the following: Perforated liners benefit grape quality by decreasing
S02 damage and berry split due to less moisture in the carton. These benefits, however, also
lead to loss in quality due to increased stem desiccation and a lower S02 concentration in the
packaging. The lower moisture content in the carton compensates for the lower S02
concentration, creating an environment less favourable for decay development. S02 damage
and berry split decreased with an increase in degree of liner perforation, irrespective of the
cultivars sensitivity to the disorder. Optimum level of perforation depends on the specific
sensitivity of a cultivar to certain quality disorders and the characteristics of the quality
disorders associated with a cultivar. Additionally, packing conditions such as product
temperature and humidity should be considered. The specific costs associated with the
advantages and disadvantages influenced by the degree of liner perforation will be the
deciding factor in liner selection.
The investigation of a clay-containing, moisture absorbing sheet emphasized the benefits and
risks of absorbing large amounts of water within the packaging. Irrespective of using a
perforated or non-perforated liner the influence of the desiccant sheet was evident throughout
the trials. It benefited grape quality by lowering the incidence of berry split and S02 damage. However, decay control was impaired by the desiccant sheet, and stem desiccation was
aggravated.
The comparison of non-perforated liners with liners of various degrees of perforation showed
the benefit of faster cooling rates of perforated liners. The various perforated liners showed
little variation in airflow and cooling times.
Morphological studies of various cultivars could not ascribe differences in stem condition to
anatomical dissimilarities between various cultivars. It was found that 'Red Globe' had a
much larger berry volume to stem weight ratio contributing to a high rate of water loss and
stem dehydration. Stem visibility is high in 'Red Globe' due to the straggly, loose nature of
the bunches. This heightens the perception of dry, brown stems and overemphasizes the
actual severity of the disorder. / AFRIKAANSE OPSOMMING: Die tafeldruifbedryf gebruik versnelde verkoeling en verpakking om druiwe te beskerm teen
uitdroging en bederf. Verskeie verpakkingsmetodes word gebruik in die industrie waarvan
elkeen sy eie voor- en nadele het.
Ondergeskikte na-oes kwaliteit kan gewoonlik toegeskryf word aan óf te min óf te veel vog
in die karton. Korrelbars, S02 skade en bederf is almal kwaliteitsdefekte wat óf veroorsaak
word, óf vererger word deur nat korrels, saam met 'n verhoging in temperatuur. In
teenstelling hiermee sal druiwe wat blootgestel word aan droë toestande, bruin stingels
ontwikkel en S02 beheer salook ondoeltreffend wees. Vog in verpakking word beheer deur
geperforeerde of nie-geperforeerde binnesakke en/of deur vogabsorberende materiaal binne
die binnesak te plaas. Om die optimum binnesak perforasie of vogabsorberende vel
kombinasie te vind is 'Thompson Seedless' en 'Red Globe' (Vitis vinifera Linnaeus)
tafeldruif kwaliteit ge-evalueer in verskeie proewe.
Die bestudering van nie-geperforeerde binnesakke teenoor binnesakke met verskillende grade
van perforasies het die volgende resultate gelewer: Geperforeerde binnesakke bevoordeel
druif kwaliteit deur die vermindering van S02 skade en korrelbars weens minder vog in die
karton. Hierdie voordele sal egter lei tot verlies in kwaliteit weens die vinniger uitdroging
van stingels en die verlaging van S02 konsentrasie in die verpakking. Die laer vog inhoud in
die karton vergoed vir die vermindering van S02 konsentrasie, omdat minder gunstige
toestande vir die ontwikkeling van bederf geskep word. S02 skade en korrelbars het
verminder met 'n vermeerdering van perforasies, ongeag die kultivar se sensitiwiteit vir die
defekte. Optimum vlakke van perforasie is afhanklik van die spesifieke sensititiwiteit van 'n
kultivar tot sekere kwaliteitsdefekte, en eienskappe van die kwaliteitsdefekte wat geassosieer
word met die kultivar. Boonop moet verpakkingsomstandighede soos produktemperatuur en
humiditeit ook in gedagte gehou word. Die spesifieke koste verbonde aan die voor- en nadele
wat beïnvloed word deur die graad van perforasie sal die bepalende faktor wees wanneer 'n
binnesak gekies word.
Die bestudering van 'n klei-bevattende, vogabsorberende vel het bewys dat dit voordele en
risiko's inhou om groot hoeveelhede vog te absorbeer. Ongeag die gebruik van 'n geperforeerde of nie-geperforeerde binnesak, was die invloed van die desikkante vel duidelik
in al die proewe. Dit was voordelig vir druif kwaliteit deurdat dit korrelbars en S02 skade
verminder het. Bederfbeheer is egter verswak deur die desikkante vel, en stingel uitdroging
IS vererger.
Die vergelyking van nie-geperforeerde binnesakke met verskillende grade van geperforeerde
binnesakke het die voordeel bewys van vinniger verkoelinstempo's van die geperforeerde
binnesak. Verskille in die graad van perforasie het 'n klein invloed gehad op die lugvloei en
verkoelingstempo 's.
Bestudering van verskeie kultivars kon geen morfologiese verskille uitwys wat variasie in
stingelkwaliteit tussen kultivars kan verklaar nie. Dit is bevind dat 'Red Globe' 'n baie groter
korrelvolume tot stingelgewig verhouding het. Stingels is meer sigbaar by 'Red Globe'
weens die yl, los aard van die trosse. Dit verhoog die persepsie van droë, bruin stingels en dit
oorbeklemtoon die voorkoms van die defek.
|
36 |
Efeito do transporte manual na ocorrencia de danos mecanicos em banana (Musa cavendishii) / Effect of manual transportation in the inicidence of mechanical damages in bananas (Musa cavendishii)Santos, Jose Henrique dos 22 December 1998 (has links)
Orientador: Antonio Carlos de Oliveira Ferraz / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Agricola / Made available in DSpace on 2018-08-08T20:24:31Z (GMT). No. of bitstreams: 1
Santos_JoseHenriquedos_M.pdf: 1220305 bytes, checksum: 11a023a2193ebb3cb35b8cd823beb20c (MD5)
Previous issue date: 1998 / Resumo: No Brasil, as perdas na colheita e pós-colheita estão estimadas em 30 a 40% da produção. As hortícolas são as espécies vegetais cultivadas economicamente que mais contribuem para a manutenção deste elevado índice de perdas. Dentre elas, destacam-se as frutas, e em especial a banana, com perdas totais estimadas em 40%. O conhecimento das propriedades mecânicas dos materiais biológicos contribui não só para o projeto e desenvolvimento de equipamentos de colheita e pós-colheita, como também para a melhor gestão da qualidade e vida útil dos produtos. Neste trabalho avaliou-se o efeito do transporte manual quanto aos danos produzidos nos frutos da bananeira ((Musa cavendishii), determinaram-se as áreas de contato entre ombro do carregador e frutos, mediram-se as acelerações produzidas nos frutos durante o transporte manual, para topografias plana, acidentada e em superfícies gramada e de concreto. Realizaram-se ensaios mecânicos de penetração, de compressão entre pratos planos e paralelos e ensaios cíclicos de compressão. Resultados evidenciaram a sensibilidade dos frutos aos danos mecânicos mesmo no estádio verde. Danos no pedúnculo não foram observados devido a ação do transporte. Observaram-se acelerações entre 0,15 a 1,35g (9,8ms-2) indicando cargas significativas de compressão, adicionais ao peso próprio, geradas durante o caminhamento. Compressões com cargas crescentes não produziram manchas de tamanhos correlacionados com a intensidade da carga revelando que o tamanho dos danos constitui bom indicador da severidade da solicitação mecânica. Os ensaios de compressão do fruto inteiro, entre prato planos e paralelos, revelaram escoamento biológico e diferentes níveis de resistência entre frutos localizados nas regiões superior, média e inferior do cacho. Os ensaios cíclicos de compressão revelaram que solicitações repetidas de pequenas amplitudes podem promover modificações permanentes no fruto com grande potencial de danos. De uma forma geral concluiu-se que danos mecânicos estão presentes no transporte manual e que soluções para proteção do cacho ou dispositivos de auxílio ao transporte sejam necessários para a redução desses danos / Abstract: Around 30% to 40% of total losses of agricultural production in Brazil occurs during harvesting and post harvesting processes. Fruits and vegetables are the major contributor to these high losses. Among them, banana can reach losses up to 40% of total production. The knowledge of mechanical properties of fruits and vegetables is important not only for better designing of handling equipment but also to improve quality management as well as shelf life. This work reports the development of a methodology to evaluate the mechanical damage of banana fruit during manual transportation. It was measured the contact area between shoulder and fruit, accelerations during manual transportation on irregular topography on grass and concrete surfaces. Mechanical tests of penetration, compression and cyclic compression between parallel rigid plates were also performed. Results brought into evidence the high sensitivity of green banana fruits to mechanical loads. Damages in the peduncle were not observed after manual transportation. Values of acceleration between 0,15 and 1,35 g (g=9,8ms-2) were measured indicating significant additional load to the weight of the bunch during transportation. Compressions using increasing loads did not produce bruise areas correlated to load values revealing that bruise area is not a good indicator of the magnitude of the applied load. Simple compression between flat plates reveled the presence of bio-yielding and different mechanical resistance in whole fruits grown in the upper, medium and lower part of the bunch. Cyclic compression showed that repeated loads of even of small amplitudes may promote permanent changes in mechanical behavior of the tissues with great possibility of damaging them. It was concluded that mechanical damages are present during manual transportation and solutions for protection of the bunch and development of transportation aids are desirable to reduce those damages / Mestrado / Maquinas Agricolas / Mestre em Engenharia Agrícola
|
37 |
Resfriamento e conservação de anturio 'IAC Eidibel¿Leme, Jose Marcos 27 February 2004 (has links)
Orientador: Sylvio Luis Honorio / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Agricola / Made available in DSpace on 2018-08-03T21:58:03Z (GMT). No. of bitstreams: 1
Leme_JoseMarcos_M.pdf: 976990 bytes, checksum: a182d3d45e2b27de2d2e4a441670cd37 (MD5)
Previous issue date: 2004 / Mestrado / Tecnologia Pós-Colheita / Mestre em Engenharia Agrícola
|
38 |
Developing alternative technologies to control brown rot (monilinia laxa) in peaches during postharvest storage.Cindi, Melusi. January 2015 (has links)
M. Tech. Agriculture / Brown rot caused by Monilinia laxa is the main pre and postharvest disease of peaches; it affects the shelf life and marketability of peaches. Increasing consumer concern regarding food safety makes it necessary to search for natural environmentally friendly alternative products for postharvest disease control. The objective of this study is to develop an environmentally friendly essential oil technology for the control of brown rot (M. laxa) in peaches at postharvest stage to replace the currently used synthetic fungicide (Iprodione)
|
39 |
Thin monolithic slow-release devices for optimum in-package preservation of export table grape varietiesOpperman, Willem Jacobus 03 1900 (has links)
Thesis (PhD)--Stellenbosch University, 2002 / ENGLISH ABSTRACT: Prototypes of a new polymer S02 gas-generating sheet for the control
of Botrytis cinerea during the post-harvest storage of table grapes, were
developed and manufactured for evaluation using a pilot scale production
plant. Attention was paid to the appearance of the sheet, in order to make it
technologically efficient as well as aesthetically acceptable to both industry and
consumers.
The storage quality of semi-commercial export consignments of various
cultivars table grapes packed with the monolithic thin-film polymer S02 slow
release sheet, was evaluated and compared to results obtained using the
locally manufactured Uvasys S02 sheet. The following were investigated: the
efficacy of the new polymer sheets in controlling storage decay, the stage at
which S02 damage is manifested on table grapes, the level of S02 damage
associated with different S02 concentrations, whether S02 damage is
manifested more readily at a particular position on the bunch, and the possible
effect of an increase in storage temperature, from an initial storage at -O.5°C
to 10°C, on the levels of S02 bleaching.
Results showed that the new polymer S02 sheet compared favourably
with the existing, commercially available Uvasys S02 sheets. The exact S02
concentration required for effective decay control varied for different cultivars,
as well as for the different types of grape packages. The S02 concentration
incorporated within the sheet was shown to be lower for grapes packed in
non-perforated bags, and slightly higher for those in perforated bags.
Differences between cultivars occurred with regard to the level of control and
the levels of S02 damage. Levels of S02 damage were also significantly
affected by the storage period and temperature fluctuations. No significant
differences in the levels of decay development and S02 damage were
observed in relation to the orientation of the bunches in the carton.
The extent of damage incurred to grape tissue by the absorption of
S02 gas was determined by low-temperature scanning (LTSEM) and
transmission electron microscopy (TEM) techniques. LTSEM and TEM
micrographs of areas damaged by S02 gas revealed that exposure to S02
gas may lead to plasmolysis and the loss of cellular fluids. Although damage
to the cell walls, cell wall structures and cell membranes, caused by S02 gas,
was more prominent in the tissue layers nearer to the fruit surface, damage
also occurred to a lesser extent in deeper tissue layers.
S02 gas release-rate studies of polymer S02 sheets containing
various concentrations Na2S205 revealed that levels of S02 gas emitted
depended largely on the levels of Na2S205 incorporated into the sheets.
Higher levels of S02 gas were released with the polymer sheets of higher
concentrations Na2S205. The release curve for the commercial Uvasys S02
sheet was very different to that of the polymer sheets, with much higher levels
of S02 gas emitted initially by the Uvasys S02 sheet compared to the polymer
sheets, while the polymer sheets emitted low levels of S02 gas for longer
periods compared to the Uvasys S02 sheet.
The manufacturing process and the pilot scale production plant that
was developed and constructed was successfully used to manufacture
polymer S02 generating sheets that are technically sound and efficient, and
aesthetically acceptable to industry. The efficacy of such sheets, regarding
levels of decay control and S02 damage, was similar to that obtained with the
presently available, commercially used Uvasys S02 sheet. / AFRIKAANSE OPSOMMING: 'n Nuwe polimeriese S02-gasvrystellingsvel vir die beheer van Botritis
cinerea gedurende die na-oes opberging van tafeldruiwe is ontwikkel en
vervaardig. 'n Nuwe loodsaanleg is spesiaal vir hierdie doel ontwerp en
gebou. Aandag is geskenk aan die voorkoms van die velle aangesien dit
belangrik is dat die nuwe velle beide tegnologies effektief en esteties
aanvaarbaar moet wees vir die sagtevrugtebedryf en verbruikers.
Die opbergingskwaliteit van semi-kommersiële uitvoerbesendings van
verskeie kultivars tafeldruiwe, verpak met die nuwe monolitiese S02-
gasvrystellingsvelle, is bepaal. Die volgende is ook bepaal: die effektiwiteit
van die nuwe polimeriese velle, die stadium waarby S02-skade op die druiwe
duidelik word, die vlak van S02-skade wat met verskillende konsentasies
S02-gas geassosieer is, die moontlike invloed wat 'n toename in temperatuur
(vanaf -0.5° tot 1DOC) op die verbleiking deur S02 sal hê, en of die S02-skade
by voorkeur in 'n sekere posisie op die druiwe sal plaasvind.
Die nuwe S02-vel het baie goed vergelyk met die kommersieël
beskikbare Uvasys S02-vel. Die S02-konsentrasie benodig vir die effektiewe
beheer van Botritis cinerea beskadiging het egter van kultivar tot kultivar
verskil. Die keuse van die tipe verpakking, geperforeerd of ongeperforeerd,
het ook 'n rol gespeel. Die konsentrasie S02-gas benodig vir effektiewe
beheer was laer wanneer die druiwe in die nie-geperforeerde sakke verpak
was. Vlakke van S02-skade is ook noemenswaardig beïnvloed deur die
opbergingsperiode en variasies in temperatuur. Daar was geen duidelike
verskil in die ontwikkeling van bederf en S02-skade ten opsigte van die
posisie van die trosse in die karton nie.
Die mate van S02-skade aan vrugweefsel is deur middel van laetemperatuurskandeerelektronmikroskopie
(LTSEM) en transmissieelektronmikroskopie
(TEM) bepaal. Daar is bevind dat die blootstelling aan
S02 moontlik tot plasmolise en die uitlek van sellulêre vloeistof kon lei.
Alhoewel S02-skade aan die selwande en membrane meer prominent in die weefsel naby die oppervlak van die vrug was, het skade ook in die
onderliggende lae plaasgevind.
Die vlakke van vrygestelde S02-gas het grootendeels afgehang van
die konsentrasie natriummetabisulfiet in die velle. Die S02-vrystellingskurwe
van die nuut ontwikkelde polimeriese S02-velle het baie verskil van dié van
die Uvasys vel. Laasgenoemde lewer aanvanklik 'n hoë konsentrasie
vrygestelde S02-gas vir 'n kort periode, gevolg deur baie lae S02 vlakke
daarna, terwyl eersgenoemde 'n laer aanvanklike S02 vrystelling het, gevolg
deur vergelykederwys hoër S02 konsentrasies daarna.
Die ontwikkelde vervaardigingsproses en die loodsaanleg wat daaruit
voortgevloei het is dus suksesvol aangewend om goeie polimeriese S02-
vrystellingsvelle te vervaardig. Hierdie velle is tegnies effektief vir die beheer
van Bofrifis cinerea gedurende die na-oes verpakking van tafeldruiwe en is
esteties aanvaarbaar vir die Suid Afrikaanse sagtevrugtebedryf.
|
40 |
Membrane studies in Japanese plums (Prunus salicina Lindl.)Jooste, Mariana 12 1900 (has links)
ENGLISH ABSTRACT: The export of Japanese plums from South Africa is challenging, since most cultivars are prone to
develop chilling injury (CI) when stored at low temperatures. This injury manifests as gel
breakdown or internal browning in the mesocarp tissue of the fruit on removal from low storage
temperature conditions, i.e. in the consumer’s fruit basket, who subsequently does not buy plums
again.
Loss of cell membrane integrity and oxidative stress are, respectively, the primary and secondary
physiological responses to CI. The main aim of this study was to investigate changes in cell
membrane composition and levels of antioxidants in plums throughout fruit development and
maturation, during forced air cooling (FAC) and storage under different temperature regimes.
‘Sapphire’ (a chilling susceptible cultivar) accumulated high levels of glutathione and
polyunsaturated fatty acids (PUFAs) during fruit development. Therefore, the cultivar is protected
against lipid peroxidation while developing on the tree, but the high levels of PUFAs, which are
easily oxidised, may cause this cultivar to be chilling susceptible when stored at low temperatures.
It is suggested that the high levels of monounsaturated fatty acids (MUFAs), which are not easily
oxidised, and ascorbic acid that accumulated in ‘Angeleno’ (a chilling resistant cultivar) during fruit
development, render this cultivar CI resistant during long-term cold-storage.
When stored at -0.5 °C, CI development increased at a higher rate, ethylene evolution rates were
higher and water soluble antioxidant activity (HAA), ascorbic acid and glutathione levels, and the
MUFA:PUFA ratio were lower in H2 (more mature) ‘Sapphire’ plums than H1 fruit (less mature).
Therefore, concurrent with H2 fruit having lower levels of antioxidants to quench free radicals
caused by chilling stress, their cell membranes were more vulnerable to oxidation due to their
phospholipid fatty acid composition. H2 fruit also had higher levels of saturated fatty acids, and
hence less fluid cell membranes than H1 fruit when stored at -0.5 °C.
An intermittent warming (IW) regime delayed symptom appearance and reduced CI severity in
plums significantly compared to storage at -0.5 °C. Fruit stored under the IW regime had a more optimal phospholipid fatty acid composition and lower membrane sterol levels under shelf-life
conditions to keep the membranes fluid. It also had higher levels of HAA and lipid soluble
antioxidant activity, ascorbic acid and glutathione, which rendered fruit better protected against
oxidation.
Elevated storage temperatures (2.5 °C to 7.5 °C) caused higher levels of lipid peroxidation or low
ascorbic acid levels and poor fruit quality compared to the IW regime in ‘Sapphire’ plums. ‘Laetitia’
plums stored at 5 °C and 7.5 °C had significantly less CI than under the IW regime, but softened
quicker due to higher ethylene evolution rates.
‘Sapphire’ tolerated both long and short FAC durations, but a slower initial FAC rate prevented CI
manifestation and caused a higher HAA after cold-storage in this fruit. ‘Laetitia’ cooled with a
slower initial FAC rate and for a longer duration resulted in the best fruit quality and had higher
HAA, total phenolic, phospholipid and saturated phospholipid fatty acid concentrations during
storage. / AFRIKAANSE OPSOMMING: Die uitvoer van Japanese pruime vanaf Suid-Afrika hou talle uitdagings in, want die meeste van die
kultivars ontwikkel koueskade wanneer hulle by lae temperature opgeberg word. Koueskade
manifesteer as gelverval of interne verbruining in die mesokarpweefsel van die vrugte wanneer die
vrugte verwyder word uit die lae opbergingstemperatuuromstandighede, m.a.w. in die verbruiker se
vrugtemandjie, wat nie weer pruime koop nie.
Verlies aan selmembraanintegriteit en oksidatiewe druk is, respektiewelik, die primêre and
sekondêre fisiologiese reaksies op koueskade. Die hoofdoel van hierdie studie was om die
veranderinge in selmembraansamestelling en antioksidantkonsentrasie in pruime te ondersoek
tydens vrugontwikkeling en volwassewording, tydens geforseerde lugverkoeling (GLV) en tydens
opberging onder verskillende temperatuurregimes.
‘Sapphire’ (‘n koueskade sensitiewe kultivar) het hoër konsentrasies van glutatioon en polionversadigde
vetsure (POV) tydens vrugontwikkeling geakkumuleer. Dié kultivar is dus voldoende
beskerm teen lipiedperoksidasie tydens vrugontwikkeling aan die boom, maar die hoë
konsentrasies van POVs, wat maklik oksideer, mag veroorsaak dat hierdie kultivar meer
koueskadesensitief is wanneer dit by lae temperature opgeberg word. Die hoë konsentrasies van
mono-onversadigde vetsure (MOV), wat nie maklik oksideer nie, en askorbiensuur wat in
‘Angeleno’ (‘n koueskade weerstandbiedende kultivar) geakkumuleer het tydens vrugontwikkeling,
verleen moontlik weerstandbiedendheid teen koueskade aan hierdie kultivar tydens langtermyn
koelkopbering.
Tydens opberging by -0.5 °C het koueskade ontwikkeling vinniger toegeneem, was
etileenvrystellingstempos hoër en die wateroplosbare antioksidantaktiwiteit (HAA), askorbiensuuren
glutatioonkonsentrasies en die MOV:POV verhouding laer in H2 (meer volwasse) ‘Sapphire’
pruime as in die H1 vrugte (minder volwasse). Dus, tesame met die laer antioksidantkonsentrasies
in die H2 vrugte om die vry radikale veroorsaak deur koelopbering te verminder, was hul
selmembrane ook meer vatbaar vir oksidasie a.g.v. die vetsuursamestellling van hul
membraanfosfolipiede. Die H2 vrugte het ook ‘n hoër konsentrasie van versadigde vetsure, en dus
minder vloeibare membrane as die H1 vrugte gehad tydens opberging by -0.5 °C.
Die dubbeltemperatuurregime (DT) het simptoomontwikkeling vertraag en koueskade-intensiteit
betekenisvol verminder in vergelyking met pruime wat by -0.5 °C opgeberg is. Vrugte wat met die
DT regime opgeberg is, het ‘n meer optimale fosfolipiedvetsuursamestelling en laer konsentrasie
van membraansterole tydens gesimuleerde raklewe gehad wat meer vloeibare membrane
verseker het. Hierdie behandeling het ook hoër HAA en lipiedoplosbare antioksidantaktiwiteit
(LAA), askorbiensuur- en glutatioonkonsentrasies gehad wat die vrugte beskerm het teen
oksidatiewe druk.
Verhoogde opbergingstemperature het hoër vlakke van lipiedperoksidasie of lae
askorbiensuurkonsentrasies asook swak vrugkwaliteit in ‘Sapphire’ pruime veroorsaak in
vergelyking met die DT regime. ‘Laetitia’ pruime wat by 5 °C en 7.5 °C opgeberg is, het
betekenisvol minder koueskade gehad in vergelyking met die DT regime, maar het vinniger sag
geword a.g.v. hoër etileenvrystellingstempos.
‘Sapphire’ kon lang en kort GLV tye weerstaan, maar ‘n stadiger inisiële GLV spoed het die
manifestasie van koueskade voorkom en het ‘n hoër HAA in die vrugte tot gevolg gehad na
koelopberging. ‘Laetitia’ wat met ‘n stadiger inisiële GLV spoed en oor ‘n langer tyd verkoel is, het
die beste vrugkwaliteit, en hoër HAA, totale fenool-, fosfolipied- en versadigde
fosfolipiedvetsuurkonsentrasies as die ander behandelings tydens koelopberging gehad
|
Page generated in 1.0037 seconds