Spelling suggestions: "subject:"potências simbólica"" "subject:"potências simbólicos""
1 |
Potências Simbólicas de IdeaisSantos, Charlene Messias 31 July 2014 (has links)
First in this dissertation we make a brief overview about basic tools of commutative
algebra required for understanding the rest of the text. Then, we present the
definition of symbolic powers and we discuss their basic properties, mainly emphasizing
questions such as primary decomposition and calculation of generators. We
conclude this work by showing actual results that relate the symbolic powers with
other notions in commutative algebra and algebraic geometry. / Nesta dissertação fazemos inicialmente um breve apanhado sobre ferramentas básicas de álgebra comutativa úteis para o entendimento do resto do texto. Em seguida, apresentamos a definição de potências simbólicas e discutimos suas propriedades mais elementares, destacando sobretudo questões como decomposição primária e cálculo de geradores. Finalizamos o trabalho mostrando resultados atuais que relacionam as potências simbólicas com outras noções da álgebra comutativa e geometria algébrica.
|
2 |
Potências simbólicas e suas interaçõesSantos, Diego Cardoso dos 29 February 2016 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / The notion of symbolic power dates back to W. Krull, who used it in the proof of
the famous theorem of principal ideal, this a crucial milestone in the short history of
commutative algebra. Later, O. Zariski, M. Nagata, D. Rees and others have shown
how this purely algebraic notion has important signi cance in algebraic geometry.
In this paper we study the symbolic powers showing some of its most fundamental
properties and their connections with various aspects of algebraic geometry and
commutative algebra. / A no ção de potência simb ólica remonta a W. Krull, que a usou na prova do
c élebre teorema do ideal principal, este um marco crucial na curta hist ória da álgebra
comutativa. Mais adiante, O. Zariski, M. Nagata, D. Rees e outros mostraram como
esta no ção puramente alg ébrica tem importante signi ficado em geometria alg ébrica.
Neste trabalho estudaremos as potências simb ólicas evidenciando algumas de suas
propriedades mais fundamentais e suas conexões com aspectos variados da geometria
alg ébrica e álgebra comutativa.
|
Page generated in 0.0526 seconds