• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 37
  • 12
  • 4
  • 4
  • 2
  • 2
  • 1
  • Tagged with
  • 74
  • 74
  • 13
  • 12
  • 11
  • 9
  • 9
  • 9
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

A key role for peroxynitrite-mediated inhibition of cardiac ERG (Kv11.1) K+ channels in carbon monoxide–induced proarrhythmic early afterdepolarizations

Al-Owais, M.M., Hettiarachchi, N.T., Kirton, H.M., Hardy, Matthew E., Boyle, J.P., Scragg, J.L., Steele, D.S., Peers, C. 25 July 2017 (has links)
yes / Exposure to CO causes early afterdepolarization arrhythmias. Previous studies in rats have indicated that arrhythmias arose as a result of augmentation of the late Na+ current. The purpose of the present study was to examine the basis for CO-induced arrhythmias in guinea pig myocytes in which action potentials (APs) more closely resemble those of human myocytes. Whole-cell current- and voltage-clamp recordings were made from isolated guinea pig myocytes as well as from human embryonic kidney 293 (HEK293) cells that express wild-type or a C723S mutant form of ether-a-go-go–related gene (ERG; Kv11.1). We also monitored the formation of peroxynitrite (ONOO−) in HEK293 cells fluorimetrically. CO—applied as the CO-releasing molecule, CORM-2—prolonged the APs and induced early afterdepolarizations in guinea pig myocytes. In HEK293 cells, CO inhibited wild-type, but not C723S mutant, Kv11.1 K+ currents. Inhibition was prevented by an antioxidant, mitochondrial inhibitors, or inhibition of NO formation. CO also raised ONOO− levels, an effect that was reversed by the ONOO− scavenger, FeTPPS [5,10,15,20-tetrakis-(4-sulfonatophenyl)-porphyrinato-iron(III)], which also prevented the CO inhibition of Kv11.1 currents and abolished the effects of CO on Kv11.1 tail currents and APs in guinea pig myocytes. Our data suggest that CO induces arrhythmias in guinea pig cardiac myocytes via the ONOO−-mediated inhibition of Kv11.1 K+ channels. / British Heart Foundation
32

Endocytosis of hERG Is Clathrin-Independent and Involves Arf6

Karnik, R., Ludlow, M.J., Abuarab, N., Smith, A.J., Hardy, Matthew E., Elliott, D.J.S., Sivaprasadarao, A. 31 December 2013 (has links)
yes / The hERG potassium channel is critical for repolarisation of the cardiac action potential. Reduced expression of hERG at the plasma membrane, whether caused by hereditary mutations or drugs, results in long QT syndrome and increases the risk of ventricular arrhythmias. Thus, it is of fundamental importance to understand how the density of this channel at the plasma membrane is regulated. We used antibodies to an extracellular native or engineered epitope, in conjunction with immunofluorescence and ELISA, to investigate the mechanism of hERG endocytosis in recombinant cells and validated the findings in rat neonatal cardiac myocytes. The data reveal that this channel undergoes rapid internalisation, which is inhibited by neither dynasore, an inhibitor of dynamin, nor a dominant negative construct of Rab5a, into endosomes that are largely devoid of the transferrin receptor. These results support a clathrin-independent mechanism of endocytosis and exclude involvement of dynamin-dependent caveolin and RhoA mechanisms. In agreement, internalised hERG displayed marked overlap with glycosylphosphatidylinositol-anchored GFP, a clathrin-independent cargo. Endocytosis was significantly affected by cholesterol extraction with methyl-β-cyclodextrin and inhibition of Arf6 function with dominant negative Arf6-T27N-eGFP. Taken together, we conclude that hERG undergoes clathrin-independent endocytosis via a mechanism involving Arf6. / British Heart Foundation (grant number PG/10/68/28528; http://www.bhf.org.uk)
33

MECHANISM OF CALCIUM DEPENDENT GATING OF BKCa CHANNELS: RELATING PROTEIN STRUCTURE TO FUNCTION

Krishnamoorthy, Gayathri 13 April 2006 (has links)
No description available.
34

Intrinsic and Synaptic Properties of Olfactory Bulb Neurons and Their Relation to Olfactory Sensory Processing

Balu, Ramani 20 March 2007 (has links)
No description available.
35

Regulation of ATP-Sensitive Potassium Channels in the Heart

Garg, Vivek 26 June 2009 (has links)
No description available.
36

The role of the perinexus in Long QT Syndrome Type 3

Wu, Xiaobo 13 February 2023 (has links)
Gain of function of cardiac voltage-gated sodium channel (Nav1.5) leads to Long QT Syndrome Type 3 (LQT3). LQT3 phenotype can be exacerbated by expanding the perinexus, which is an intercellular nanodomain with high density of Nav1.5 in the intercalated disc. Following this finding, we found that elevating extracellular sodium and widening the perinexus synergistically exacerbated LQT3 phenotype, Importantly, we also found that perinexal expansion increases the susceptibility to cardiac arrest in aged LQT3, which demonstrated that perinexal expansion is an arrhythmogenic risk especially in aged LQT3 patients. Furthermore, we observed that the perinexus narrows with aging and conceals LQT3 phenotype, which suggests that perinexal narrowing may have a cardio-protective role during aging in LQT3. Surprisingly, following the finding of the synergistic effect of extracellular sodium elevation and perinexal widening on LQT3 phenotype in drug-induced LQT3 guinea pig hearts, we found that this synergistic effect was not observed in genetically-modified LQT3 mouse hearts, which is due to high sodium also increasing transient outward potassium current (Ito). In summary, the whole project investigated the role of the perinexus in LQT3 from different conditions including sodium, aging and species. The findings in this project discovered the importance of perinexal expansion in LQT3 and also the involvement of Ito in sodium regulating LQT3 phenotype in hearts which functionally express Ito channels. Therefore, a LQT3 animal model which has similar electrophysiology close to human may be a great option for translational purpose. / Doctor of Philosophy / Long QT Syndrome Type 3 (LQT3) is an inherited heart disease with the phenotype of long QT interval in ECG. It has been found that LQT3 phenotype gets worse when a very tiny space in the heart, termed as the perinexus, is wide due to cardiac edema. Following this finding, we also found that increasing sodium concentration together with wide perinexus can further exacerbate LQT3 phenotype in guinea pig hearts. Furthermore, we found that widening the perinexus in aged LQT3 hearts causes cardiac death but not in adult, which suggests that perinexal widening worsens LQT3 phenotype and even leads to cardiac death in aged hearts. Besides, we found that the perinexus narrows with aging and there is no difference in LQT3 phenotype between adult and aged hearts, which suggests that the narrow perinexus during aging may protect the hearts from cardiac death in LQT3. Surprisingly, we discovered that increasing sodium and widening the perinexus together fails to exacerbate LQT3 phenotype when compared with widening the perinexus alone in LQT3 mouse hearts, which is due to high sodium increasing transient outward potassium current (Ito). Notably, Ito channels are not functionally expressed in guinea pig hearts. In summary, the whole project investigated the role of the perinexus in LQT3 from different conditions including sodium, aging and species. The findings in this project discovered the importance of perinexal expansion in LQT3 and also the involvement of Ito in sodium regulating LQT3 phenotype in hearts. Therefore, a LQT3 animal model which has similar electrophysiology close to human may be a great option for translational purpose.
37

L'implication des tubules T dans la repolarisation ventriculaire chez la souris

Mercier, Frédéric January 2007 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.
38

Mécanotransduction dans les neurones sensoriels de mammifères

Hao, Jizhe 08 December 2011 (has links)
La mécanotransduction correspond à un processus dans lequel la force physique est convertie en signal chimique ou électrique. Ce processus est à la base de nombreuses fonctions physiologiques, y compris le sens du toucher, l’audition, la proprioception et la nociception. Nous ne connaissons pas à ce jour les mécanismes moléculaires à l’origine de la diversité fonctionnelle des mécanorécepteurs. L’objectif de thèse était de fournir 1 caractérisation des canaux mécanosensibles des neurones sensoriels afin d’identifier les mécanismes responsables des propriétés des mécanorécepteurs. 4 types de courants excitateurs ont été identifiés et classés sur la base de leurs cinétiques de relaxation: des courants à relaxation rapide, intermédiaire, lente ou ultra-lente. La relaxation résulte de l’adaptation et de l’inactivation. Nous montrons également que ces courants mécanosensibles possèdent des propriétés spécifiques permettant le codage des différents paramètres du stimulus mécanique. Tous s’activent graduellement en fonction de l’intensité du stimulus mécanique, mais seuls les courants à relaxation lente et ultralente informent sur la persistance du stimulus. A contrario, les courants à relaxation rapide et intermédiaire sont mis en jeu essentiellement par des stimulations rapides, ils traduisent donc la rapidité d’installation du stimulus. Nous avons ensuite identifié un nouveau courant mécanosensible potassique (IKmech) exerçant un effet inhibiteur sur la décharge des mécanorécepteurs. Le profil pharmacologique et les travaux menés sur des souris KO et transgéniques montrent que le courant IKmech est porté par la sous-unité Kv1.1 qui est mécano-susceptible via un mécanisme par lequel la pression altère la sensibilité au potentiel des canaux. En s’opposant aux courants excitateurs, le courant IKmech régule le seuil de décharge des mécano-nocicepteurs et la fréquence de décharge des mécanorécepteurs non nociceptifs. / The somatosensory system mediates fundamental physiological functions, including the senses of touch, pain and proprioception. The aim of my thesis was to understand molecular mechanism of mechanotransduction in mammalian sensory neurons.We identified 4 types of mechanotransducer currents that distribute differentially in cutaneous nociceptors and mechanoreceptors and that differ in desensitization rates. Desensitization of mechanotransducer channels in mechanoreceptors was fast and mediated by channel inactivation and adaptation, which reduces the mechanical force sensed by the transduction channel. Both processes were promoted by negative voltage. These properties of mechanotransducer channels suited them to encode the dynamic parameters of the stimulus. In contrast, inactivation and adaptation of mechanotransducer channels in nociceptors had slow time courses and were suited to encode duration of the stimulus. Thus, desensitization properties of mechanotransducer currents relate to their functions as sensors of phasic and tonic stimuli and enable sensory neurons to achieve efficient stimulus representation.In the second work, we explored the molecular determinants of threshold differences and temporal adaptation among mammalian mechanoreceptors. We identified a novel mechanosensitive K+ current (IKmech) in different classes of mechanosensory neurons from mouse and rat DRGs. IKmech activates slowly in response to mechanical stimulation and is carried by Kv1.1 subunit-containing K+ channels. By antagonizing depolarizing drive induced by excitatory MS currents, IKMech regulates threshold for noxious mechano-perception and temporal adaptation in non-painful mechanosensation. Our work has identified Kv1.1 as an essential molecular element in defining the threshold range of mechanical sensitivity and temporal responses of fibers associated with mechanical perception.
39

Charakterisierung spannungsabhängiger Kaliumkanäle an glialen Vorläuferzellen der Maus

Schmidt, Kathrin 16 October 1998 (has links)
Das Membranstrommuster von Oligodendrozyten verändert sich während der Entwicklung dieser zellen sehr stark. Während die Membranleitfähigkeit von Oligodendrozyten-Vorläuferzellen von auswärts rektifizierenden Kaliumkanälen geprägt ist, exprimieren reife Oligodendrozyten passive, nicht spannungsabhängige Kaliumkanäle. Die Aktivität dieser Kanäle beeinflußt die Proliferation und Differenzierung dieser Zellen. In der vorliegenden Arbeit wurde die Expression von spannungsaktivierbaren Kaliumkanälen des Kv1-Typs (Shaker-Typ) in kultivierten Oligodendrozyten-Vorläuferzellen anhand der Transkriptexpression, der Expression von Kv1-Proteinen und der elektrophysiologischen und pharmakologischen Analyse der Membranströme untersucht. Auf mRNA Ebene wurden unterschiediche Kombinationen von Kv1.1, Kv1.4; Kv1.5 und Kv1.6 Transkripten gefunden. Ebenfalls wurde in einigen Zellen eine signifikante Menge an Kv1.2 und Kv1.3 Transkripten gefunden. Die Heterogenität der Transkriptexpression konnte nicht mit Unterschieden in den elektrophysiologischen Eigenschaften korrelliert werden. Die Expression der Kv1 Proteine wurde mit Hilfe von immunozytochemischen Färbungen mit spezifischen polyklonalen Antikörpern gegen die Kanäle Kv1.1 bis Kv1.6 untersucht. Alle Oligodendrozyten-Vorläuferzellen exprimierten die Kanäle Kv1.4 (85% der Zellen), Kv1.5 (99 %) und Kv1.6 (99 %), Kv1.1 Proteine wurden von 10 % der Zellen gebildet. Um den funktionellen Beitrag der Kv1 Kanäle zum Gesamtzellstrom zu bestimmen, wurde die Stromaktivierung und -inaktivierung sowie die Sensitivität der Ströme gegen die spezifischen Kaliumkanalblocker getestet. Dabei wurden durch TEA (1-100 mM), 4-AP (0,125-1 mM) und Chinidin (5-100 mM) jeweils ein großer Teil der Ströme gehemmt, durch CTX, DTX und MCDP wurde die Kanalaktivität nicht beeinflußt. Um den Beitrag der Kanalproteine Kv1.4 bzw. Kv1.1 zu den elektrophysiologischen Eigenschaften des Gesamtzellstromes zu testen, wurden an einzelnen Oligodendrozyten-Vorläuferzellen kombinierte elektrophysiologische Untersuchungen und immunozytochemische Färbungen durchgeführt. Dabei konnten keine signifikanten Unterschiede zwischen Kv1./Kv1.4 positiven und Kv1.1/Kv1.4 negativen Zellen festgestellt werden. Aus den Untersuchungen ergeben sich folgende Schlußfolgerungen: Oligodendrozyten exprimieren eine Vielzahl unterschiedlicher Kv1 Transkripte.Die überwiegende Mehrzahl der Oligodendrozyten-Vorläuferzellen exprimieren die Kv1 Proteine Kv1.4, Kv1.5 und Kv1.6.Der Gesamtzellstrom kann vorwiegend durch Kv1.5 Kanäle oder durch eine Kombination von Kv1.4/Kv1.6 Kanälen sowie durch Mitglieder anderer Familien spannungsabhängiger Kaliumkanäle getragen werden. Um zu untersuchen, ob spannungsabhängige Kaliumkanäle durch die Aktivierung von inhibitorischen Neurotransmitterrezeptoren beeinflußt werden, wurden kultivierte Körnerzellen als Modellsystem verwendet, da diese eine hohe Dichte an Kv Kanälen sowie an GABA Rezeptoren exprimieren. Im "cell-attached" Modus der Patch-Clamp-Technik wurde die Reaktion von einzelnen auswärts rektifizierenden Kaliumkanälen während der GABA-Antwort untersucht. Mit diesem Ansatz konnte gezeigt werden, daß die Öffnungswahrscheinlichkeit dieser Kanäle während der Reaktion der Zelle auf GABA stark zurückgeht. Da Oligodendrozyten-Vorläuferzellen ebenfalls GABAA-Rezeptoren exprimieren, ist anzunehmen, daß deren Aktivierung über einen analogen Mechanismus zur Blockierung von Kaliumkanälen führt. / The membrane current pattern of oligodendrocytes changes dramatically during cell development. In oligodendrocyte precursor cells the membrane conductance is dominated by outwardly rectifying potassium channels, mature oligodendrocytes on the other hand express passive, not voltage-gated potassium channels. The activity of these channels influences the proliferation and differentiation of the cells. In the present work the expression of outwardly-rectifying potassium channels of the Kv1-type (Shaker-type) was analysed in oligodendrocyte precursor cells in culture. Expression of Kv1 transcripts, Kv1 proteins as well as electrophysiological and pharmacological properties of these channels were tested. Different combinations of Kv1.1, Kv1.4, Kv1.5 and Kv1.6 transcripts were detected at mRNA level. In some cells also a significant amount of Kv1.2 and Kv1.3 transcripts was found. The heterogeneity of transcript expression could not be correlated with differences in electrophysiological properties. The expression of Kv1 channel proteins was analysed using immunocytochemical stainings with specific monoclonal antibodies against the channel molecules Kv1.1 to Kv1.6. All oligodendrocyte precursor cells expressed the channel molecules Kv1.4 (85 % of the cells), Kv1.5 (99 %) and Kv1.6 (99 %), Kv1.1 proteins were detected in 10 % of the cells. To find out the functional contribution of Kv1 channels to the whole-cell current of the cells the activation and inactivation characteristics as well as the sensitivity of the potassium current to different potassium channel specific antagonists was tested. Parts of the current were inhibited by TEA (1-100 mM), 4-AP (0,125-1 mM) and Chinidin (5-100 mM), CTX, DTX and MCDP had no effect on the channel activity. To isolate the contribution of the channel molecules Kv1.1 and Kv1.4 the electrophysiological properties of the whole cell current electrophysiological analysis of single cells using whole-cell patch-clamp technique and immunocytochemical stainings were combined. With this method no significant differences between Kv1.1/Kv1.4-positive and Kv1.1/Kv1.4 negative cells could be detected. From these findings the following conclusions could be drawn: Oligodendrocyte precursors express various different Kv1 transcripts.The majority of oligodendrocyte precursor cells expresses the Kv1 proteins Kv1.4, Kv1.5 and Kv1.6.The total current (whole-cell current) most likely is carried through Kv1.5 channels or a combination of Kv1.4/Kv1.6 channels and probably another type of voltage-gated potassium channels. To find out if voltage-gated potassium channels are related to the activation of inhibitory neurotransmitter receptors a model system of cultured granule cells was used. This cell type was selected because they are known to express a high density of Kv channels as well as GABAA receptors as well. The activity of single outwardly rectifying potassium channels was detected using the cell-attached mode of patch-clamp technique. With this method it could be demonstrated that the open probability of voltage-gated potassium channels is markedly decreased during GABAA response. It could be concluded that the activation of GABAA receptors on oligodendrocyte precursor cells leads to the inhibition of potassium channels in the same way as in cultured granule cells.
40

Ion transport pharmacology in heart disease and type-2 diabetes.

Soliman, Daniel 06 1900 (has links)
The cardiac sodium-calcium exchanger (NCX) is an important membrane protein which regulates cellular calcium necessary for the optimal contractile function of the heart. NCX has become a focal point in ischemic heart disease (IHD) research as evidence suggests that reactive oxygen species (ROS) produced during IHD can cause NCX to malfunction resulting in an intracellular calcium overload leading to cardiac contractile abnormalities. Therefore, I hypothesized that NCX function is mediated by ROS increasing NCX1 activity during cardiac ischemia-reperfusion. To research this hypothesis, I investigated cellular mechanisms which may play a role in NCX dysfunction and also examined methods to correct NCX function. I found that reactive oxygen species directly and irreversibly modify NCX protein, increasing its activity, thereby worsening the calcium overload which is deleterious to cardiac function. I also elucidated the molecular means by which NCX protein modification occurs. Exploring pharmacological means by which to decrease NCX function to relieve the calcium overload and reduce the damage to the heart, I discovered that ranolazine (Ranexa), indicated for the treatment of angina pectoris inhibits NCX activity directly, thereby further reducing the calcium overload-induced injury to the heart. Furthermore, many IHD patients are also co-morbid for type-2 diabetes. These patients are prescribed sulfonylurea (SU) agents which act at the ATP sensitive K+ channel (KATP). One agent such as glibenclamide is known to have cardiotoxic side effects. Therefore, SUs devoid of any cardiac side effects would beneficial. Interestingly, patients possessing the genetic variant E23K-S1369A KATP channel have improved blood glucose levels with the use of the SU gliclazide. Therefore, I determined the functional mechanism by which gliclazide has increased inhibition at the KATP channel. These findings have implications for type-2 diabetes therapy, in which 20% of the type-2 diabetic population carries the KATP channel variant. In summary, the findings presented in this thesis have implications on treatment strategies in the clinical setting, as a NCX inhibitor can be beneficial in IHD and possibly type-2 diabetes. Moreover, a pharmacogenomic approach in treating type-2 diabetes may also provide a positive outcome when considering co-morbid cardiac complications such as atrial fibrillation and heart failure.

Page generated in 0.0612 seconds