• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 2
  • 1
  • Tagged with
  • 14
  • 14
  • 13
  • 11
  • 10
  • 9
  • 9
  • 8
  • 6
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Investigation of the absorption solvent for bioenergy carbon capture and storage (BECCS) through pilot plant trials / Undersökning av absorptionen lösningsmedel för bioenergi kol infångning och lagring (BECCS) genom pilotanläggnings experiment

Karthikeyan, Tejas Latha January 2020 (has links)
Att begränsa globala uppvärmningen till 1,5°C kommer kräva negativa koldioxidutsläpp. En metod för att generera negativa koldioxidutsläpp är så kallad Bio-Energy Carbon Capture and Storage (BECCS). En direkt implementering av BECCS är att fånga in CO2 från rökgas som genereras vid förbränning av biomassa i en så kallad post-combustion capture-konfigurering. Post-combustion BECCS har skapat en stor resonans hos kraftverksoperatörer och pappersproducenter. Stockholm Exergi, som ägs av Fortum och Stockholms Stad, siktar på att fånga in upp till 800 kt CO2 per år från deras biomass-eldade CHP-anläggning i Värtaverket vid 2024. Planen är att fånga in CO2 från rökgasen genom en absorptionsprocess och sedan skeppa det till Norge för geologisk förvaring. Mastersexamensarbetet följde en experimentskampanj driven av Stockholm Exergi som siktade på att uppnå experimentell validering av en absorptionsprocess för koldioxidinfångning från rökgas vid förbränning av biomassa. En testenhet konstruerades och tester genomfördes från december 2019 till maj 2020. Examensarbetet fokuserade på rollen absorptionsmedlet hade på infångningshastigheten. Tester med tre olika lösningsmedel genomfördes och de experimentella resultaten analyserades genom en kombination av jämviktsmodeller och Murphree-effektiviteter. Resultatet visar att ett absorptionsmedel baserat på vattenlöslig K2CO3 är kompatibel med rökgas från förbränning av biomassa, eftersom infångningshastigheter mellan 5 och 13 % uppmättes. De undersökta hastighetspromotorerna (3 vikt% H3BO3 + 1 vikt% V2O5) visade dock inte den förväntade effekten på infångningshastigheter, och på grund av tidsbegränsningar testades inte olika vikt% av promotorn under det här examensarbetet. Ingen tydlig slutsats drogs därför med hänsyn till promotorer. Baserat på Murphree-effektiviteterna som beräknats genom experimenten med konstant förhållande mellan vätske- och gasflöde uppskattas en 28–35 m hög kolonn fånga 90% av CO2 i rökgasen. / Limiting global warming to 1.5°C will require negative carbon emissions. One way for generating negative carbon emissions is through bio-energy carbon capture and storage (BECCS). A direct implementation of BECCS is to capture CO2 from the flue gas originating from the combustion of biomass in a post-combustion capture configuration. Post-combustion BECCS has generated considerable resonance among power plant operators and paper manufactures. Stockholm Exergi, owned by Fortum and Stockholm Stad, aims at capturing up to 800 kt CO2 per year from their biomass-fired CHP plant in Värtaverket by 2024. The plan foresees to capture CO2 from the flue gas utilizing an absorption process and shipment of the captured CO2 to Norway for geological storage. The Master thesis project followed an experimental campaign run by Stockholm Exergi that aimed at experimental validation of an absorption process for carbon capture from flue gas originating from the combustion of biomass. A test unit was constructed, and test trials were run from Dec. 2019 to May 2020. The thesis focused on the role of the absorption solvent on the capture rate. Test trails with three different solvents were conducted, and the experimental results were analyzed using equilibrium models combined with Murphree efficiencies. The results show that an absorption solvent based on aqueous K2CO3 is compatible with the flue gas derived from biomass combustion, i.e., capture rates ranging from 5 to 13 % were measured. However, the investigated rate promoters (3 wt.% H3BO3 + 1 wt.% V2O5) did not show the expected effect with regards to capture rates and due to time constrain different wt.% of the promoter were not tested within the scope of this thesis. Therefore, no firm conclusion was given with regards to promoters. Based on the Murphree efficiency calculated from the experiment with keeping a constant liquid to gas flow ratio, a column height of 28-35 m is estimated to capture 90% of CO2 from the flue gas.
12

Simulation of stripper modifications for bioenergy carbon capture by absorption / Simulering av strippermodifieringar för bioenergi avskiljning av koldioxid genom absorption

Villar I Comajoan, Laia January 2021 (has links)
Att koldioxidutsläppen neutraliseras är avgörande för att begränsa klimatförändringarna. Bioenergi i kombination med separation och lagring av koldioxid (BECCS) är en Teknik som kan generera negativa utsläpp. Det största hindret för dess storskaliga genomförande är de höga energikraven för processen. Detta projekt syftar till att kvantifiera energistraffen för lean solvent flash och modifikationer för multitrycksstrippning för att förbättra prestandan av koldioxidavskiljning (CC) i en kraftvärmeverksanläggning för förbränning av biomassa.  En jämviktsmodell utvecklades och validerades för att simulera en fullskalig CC genom kemisk absorption i Aspen Plus med kaliumkarbonat som lösningsmedel. Båda layoutändringarna resulterar i energipåföljder på 18-21 % för en kraftvärmeverk, medan energistraffet för baslinjeprocessen är 5 %. För ett kraftverk går straffen från 32 till 62 %. Detta visar hur en förbättring av processen kan minska kostnaderna för CCS, särskilt om värme anses vara en värdefull produkt. CCS i kraftvärmeverk har en mycket lägre energipåverkan än i kraftverk där värme inte återvinns. / Bio-energy with carbon capture and storage (BECCS) is a technology that can generate negative emissions. Hence it is recognized as a solution for becoming carbon neutral, which is essential for climate change mitigation. The main obstacle for its large scale implementation is the high energy requirements of the process. This thesis aims at quantifying the energy penalties for lean solvent flash and multi-pressure stripper layout modifications to improve the performance of carbon capture (CC) by means of absorption with a liquid solvent in a biomass-fired CHP plant. The work focuses on K2CO3 based solvents operated in a mixed temperature swing/pressure swing cycle witch is deemed advantageous for heat recovery.  An equilibrium model was developed and validated to simulate a full-scale CC by chemical absorption in Aspen Plus using potassium carbonate as solvent. Both layout modifications result in energy penalties of 18-21 % for a CHP plant, while the energy penalty for the baseline process is 28 %. For a power plant, the penalties go from 32 % to 62 % for the lean solvent flash and the multi-pressure stripper respectively. This shows how improving the process can reduce the costs of CCS, especially if heat is considered a valuable product. CCS in CHP plants has a much lower energy impact than in power plants where heat is not recovered.
13

Opportunities and uncertainties in the early stages of development of CO2 capture and storage

Lind, Mårten January 2009 (has links)
The topic of this thesis is carbon dioxide (CO2) capture and storage (CCS), which is a technology that is currently being promoted by industries, scientists and governments, among others, in order to mitigate climate change despite a continued use of fossil fuels. Because of the complex nature of CCS and the risks it entails, it is controversial. The aim of this thesis is to analyse how the technology may be further developed in a responsible manner. In the first part of the thesis different methods for capturing CO2 from industrial processes as well as power plants are analysed. The aim is to identify early opportunities for CO2 capture, which is considered important because of the urgency of the climate change problem. Three potential early opportunities are studied: i) capturing CO2 from calcining processes such as cement industries by using the oxyfuel process, ii) capturing CO2 from pressurised flue gas, and iii) capturing CO2 from hybrid combined cycles. Each opportunity has properties that may make them competitive in comparison to the more common alternatives if CCS is realised. However, there are also drawbacks. For example, while capturing CO2 from pressurised flue gas enables the use of more compact capture plant designs as well as less expensive and less toxic absorbents, the concept is neither suitable for retrofitting nor has it been promoted by the large and influential corporations. The second part of the thesis has a broader scope than the first and is multidisciplinary in its nature with inspiration from the research field of Science and Technology Studies (STS). The approach is to critically analyse stakeholder percep-tions regarding CCS, with a specific focus on the CCS experts. The thesis sheds new light on the complexity and scientific uncertainty of CCS as well as on the optimism among many of its proponents. Because of the uncertain development when it comes to climate change, fossil fuel use and greenhouse gas emissions, the conclusion is that CCS has to be further developed and demonstrated. A responsible strategy for a future development of CCS would benefit from: i) a search for win-win strategies, ii) increasing use of appropriate analytical tools such as life-cycle analysis, iii) a consideration of fossil fuel scarcity and increasing price volatility, iv) funding of unbiased research and v) increasing simultaneous investments in long-term solutions such as renewable energy alternatives and efficiency improvements. / QC 20100727
14

Koldioxidavskiljning på ett biobränsleeldat kraftvärmeverk : Simulering av två avskiljningstekniker vid Karlstad Energis kraftvärmeverk, Heden 3 / Carbon dioxide capture at a biofuel-fired CHP-plant : Simulation of two separation techniques at Karlstad Energy's CHP-plant, Heden 3

Bergström, Sandra January 2020 (has links)
BECCS (Bioenergy Carbon Capture and Storage) is an important part of measures to achieve zero net emissions globally by 2050, as the technology can create carbon sinks. However, the technology is very energy-intensive and expensive, and affects the existing systems at implementation. The purpose of this study is to investigate the possibility of implementing BECCS at Karlstad Energy's biofuel-fired CHP-plant, Heden 3. The goal is, by simulation in CHEMCAD, to generate energy consumption key figures for two different separation technologies (MEA-MonoEthanolAmine and HPC-HotPotassiumCarbonate) with 90 % separation rate in three different operating cases. In addition, the systemic impact on Heden 3 will be determined by analyzing three different scenarios. In the first scenario fuel consumption is kept unchanged and steam to the carbon capture system is extracted before the turbine. In the second scenario fuel supply increases to meet the district heating needs of the existing system and steam to the carbon capture system is extracted before the turbine. In the third scenario fuel supply is kept unchanged and steam is extracted from the turbine. In addition, the study investigates various transport options for storage of carbon dioxide and finally calculate the total carbon sink Karlstad Energy can contribute to. The results show that production of electricity is reduced by 65-87 % after implementation of MEA and 151-238 % for HPC in the first scenario. Without heat utilization in the carbon capture system, heat production is reduced by 66-86 % with MEA and 54-76% for HPC. In the second scenario, a fuel supply increase by 134 % is required to meet the needs, which corresponds to more than twice the boiler capacity and results in a reduced production of electricity by 247 %. In the third scenario, production of electricity is reduced by 104 % at maximum load with HPC. The HPC system has high-quality heat to utilize, probably enough to meet the district heating needs without increasing the boiler power. But heat optimization opportunities need to be further explored in order to be able to express something to a greater extent. The MEA process does not offer the same opportunities for heat utilization. As the CHP-plant have heat as the main product, HPC would be a more suitable alternative despite the high load on the electricity production. The performance of the carbon dioxide plant seems to vary between different operating cases and it can be concluded that the variation is related to the flue gas composition rather than being load dependent. Transport of carbon dioxide by train has the lowest carbon dioxide emissions and requires the least number of cargoes for transport from Karlstad to storage in Norway. However, this is not relevant at present because of the lack of rail connection to the plant. Total carbon sink is approximately 127 000 tonnes per year if the boiler capacity is assumed to be unchanged. / BECCS (Bioenergy Carbon Capture and Storage) är en viktig del av åtgärder i målet om att nå nollnetto utsläpp år 2050 globalt, då tekniken kan skapa kolsänkor. Tekniken är dock mycket energikrävande och dyr, och påverkar de befintliga systemen vid implementering. Syftet med den här studien är att undersöka möjligheten att implementera BECCS på Karlstad Energis biobränsleeldade kraftvärmeverk, Heden 3. Målet är att, genom simulering i CHEMCAD, ta fram förbrukningsnyckeltal för två olika avskiljningstekniker (MEA-MonoEtanolAmin och HPC-HotPotassiumCarbonate) med 90 % avskiljningsgrad vid tre olika driftfall. Dessutom ska systempåverkan på Heden 3 fastställas genom analys av tre olika scenarier. I första scenariot hålls bränsleförbrukningen oförändrad och ånga till koldioxidavskiljningssystemet tappas av innan turbinen. I det andra scenariot ökar bränsletillförseln för att tillgodose fjärrvärmebehovet i det befintliga systemet och ånga till koldioxidavskiljningssystemet tappas av innan turbinen. I det tredje scenariot hålls bränsletillförseln oförändrad och ånga extraheras från turbinen. Därtill undersöks i studien olika transportmöjligheter till lagringsplats av koldioxiden och slutligen beräknas den totala kolsänkan Karlstad Energi kan bidra med. Resultaten visar att elproduktionen i det första scenariot reduceras med 65-87 % för MEA och för HPC 151-238 %. Utan värmeutnyttjande från koldioxidavskiljningssystemen reduceras värmeproduktionen med 66-86 % med MEA och 54-76 % med HPC. I det andra scenariot krävs att bränsletillförseln ökar med 134 % för att tillgodose behoven vilket motsvarar mer än dubbla panneffekten och innebär en reducerad elproduktion på 247 %. I det tredje scenariot reduceras elproduktionen med 104 % vid maximal last med HPC.  I HPC-systemet finns högvärdig värme att utnyttja, sannolikt tillräckligt mycket för att kunna uppfylla fjärrvärmebehovet utan att öka panneffekten. Men värmeoptimeringsmöjligheter behöver undersökas ytterligare för att kunna uttrycka något i större omfattning. I MEA-processen finns inte samma möjligheter till värmeutnyttjande. Eftersom kraftvärmeverket har värme som främsta produkt skulle således HPC vara ett lämpligare alternativ trots den höga belastningen på elproduktionen. Koldioxidanläggningens prestanda förefaller variera mellan olika driftfall och med en enklare undersökning kunde slutsatsen dras att variationen har ett samband med rökgassammansättningen snarare än att det är ett lastberoende. Transport av koldioxid med tåg har lägst koldioxidutsläpp och kräver minst antal laster för transport från Karlstad till lagring i Norge. Detta är dock inte aktuellt i dagsläget på grund av avsaknaden av räls in till verket. Den totala kolsänkan är cirka 127 000 ton per år om pannan antas köras oförändrat.

Page generated in 0.0828 seconds