• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1454
  • 847
  • 259
  • 251
  • 176
  • 133
  • 86
  • 45
  • 29
  • 27
  • 25
  • 22
  • 18
  • 15
  • 11
  • Tagged with
  • 3981
  • 594
  • 341
  • 272
  • 262
  • 240
  • 221
  • 207
  • 196
  • 186
  • 184
  • 176
  • 169
  • 160
  • 156
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
321

The effect of pulping, bleaching, and refining operations on the electrokinetic properties of wood fiber fines.

Goulet, Mike T. 01 January 1989 (has links)
No description available.
322

The Effect of Electrohydraulic Discharge on Flotation Deinking Efficiency

Carleton, James Richard 12 January 2005 (has links)
Firing an underwater spark discharge generates an expanding plasma which causes a spherical shockwave to propagate through the surrounding water. The shockwave can have many effects, including resonance effects on bubbles, mechanical destructive effects on solid surfaces and living organisms, and sonochemical oxidative effects on particles and chemical species present in the water. This phenomenon has been shown to improve the efficiency of ink removal in a laboratory flotation deinking cell, while simultaneously decreasing fiber loss. These process improvements are attributed to the sonochemical oxidation of ink particle surfaces, caused by shockwave-induced cavitation. This finding is supported by zeta potential measurements. Sparking was found to reduce the zeta potential of ink particles by up to 20 mV. When sparking was performed during deinking, no effect was found on either ink removal or solids loss. However, when the pulp was pretreated with sparking before flotation, a significant improvement was seen in the brightness gain. Further, fiber loss was decreased by up to 25% in a single flotation stage. The economics of this process are attractive; payback is on the order of three months based on fiber savings alone. Also, at about 1.5 kJ per spark, the power requirements are minimal with respect to the benefit derived.
323

Characteristics of carbony compounds from a heavy-duty diesel engine fueled with dimethyl ether-diesel blend

Cheng, Yi-Jie 23 June 2011 (has links)
In this research, used dimethyl ether as second fuel blended with diesel (mixed quantity with 10 L/min to 60 L/min, interval 10L/min), which test behavior of diesel engine and carbonyls emission investigated. The engine operated at steady-state condition of 1600 rpm, 145 Nm torque , eight kinds of carbonyls were sampling and analysis, and discuss the performance of the ozone formation potential (OFP). The results of regulated pollutant emissions, CO, THC and PM emission could increasing with the addition of DME, NOX emissions, along with the mixed rate of per minute from 10 L, 20 L, 30 L, 40 L, 50 L and 60 L of its reduction rate was 6.8%¡B8.3%¡B10.0%¡B10.6%¡B13.1% and 15.4%, shows that the DME can reduce NOX emissions. Add a various amount of dimethyl ether , which carbonyl compounds emission from the gas flow 0 L(with neat diesel), 10 L, 20 L, 30 L, 40 L, 50 L and 60 L concentrations were 2507.44 g/m3, 2665.27 g/m3, 2726.67 g/m3, 2958.07 g/m3, 4645.87 g/m3, 5470.20 g/m3 and 7279.91 g/m3; the emission factor of 143.58 mg/bhp-hr, 152.65 mg/bhp-hr, 156.62 mg/bhp-hr, 168.69 mg/bhp-hr, 266.22 mg/bhp-hr, 312.38 mg/bhp-hr and 416.36 mg/bhp-hr, shows the addition of DME will rising the carbonyl compound emissions of diesel engine. Gas of dimethyl ether (10,20,30,40,50 and 60 L/min) into the neat diesel fuel (0 L/min) as a mixture fuel additives, the effect of ozone formation potential as increase in the total ozone formation potential, 21945.93 g-O3/m3, 23698.40 g-O3/m3, 24427.46 g-O3/m3, 26672.98 g-O3/m3, 42683.69 g-O3/m3, 50519.26 g-O3/m3 and 67710.60 g-O3/m3 respectively, and ozone manufacturability will 0 L/min of 8.75 increased to 60 L/min of 9.30.
324

Velocity and temperature distributions of turbulent plane jet interaction with the nonlinear oppositive progressive gravity wave and ocean current

Li, Zong-Heng 03 August 2011 (has links)
The variation of velocity and temperature distribution in arbitrary profile along the centerline in turbulent which encounters non-linearity regular progressive gravity wave and steady uniform flow right in front are investigated analytically and verified by existing experiments. Firstly, the action of periodic waves and current are incorporated into the equation of motion as an external force and applied radiation stress for evaluating the velocity distribution over arbitrary lateral cross section. Based on the momentum exchange after the interaction between turbulent plane jet and oppositive non-linearity wave and uniform flow, the physical characteristics of jet-wave and current are able to be determined theoretically. Secondly, there are critical sections in both velocity and temperature transport processes when the turbulent plane jet influenced by wave and current motion. Fluctuating function will be close to infinity, is the order of wave sharpness; Average velocity for every wave period along the centerline approach to zero, That¡¦s thanks to the momentum of plane jet is extruded by the momentum of wave and current, Beyond the critical section, characteristics of the jet is no longer existing, such phenomena mean that only the wave and current dominating. Velocity and temperature distribution in the zone of flow developed are Gaussian curve, as has been measured in experiment. The momentum extrusion of counter flow in jet is significant in the deep water and small wave; The velocity distribution coefficient is changing with the increasing of counter flow velocity, owing to the entrainment effect, and the potential core will reducing with the increasing of counter flow velocity.
325

Effects of isobutanol-diesel blend on carbonyl compounds characteristics in a heavy-duty diesel engine

Yang, Hau-Siang 29 June 2012 (has links)
This research conducted exhaust tests in an HDDE (heavy-duty diesel engine) using pure diesel fuel mixed with 10 to 30% isobutanol under the condition of U.S. Transient Cycle. Characteristics of 18 carbonyls emissions were investigated and compared with those using pure diesel. Results showed that the brake power (BP) and brake thermal efficiency (BTE) were decreased with increasing isobutanol mixtures (10 to 30%). Brake specific fuel consumption (BSFC) was increased for isubutanol ¡Ø 10%, but was decreased for isubutanol above 10%. The regulated emissions of CO, PM and NOx were decreased, but CO2 and THC were increased, due to variations of cetane number and heating value. Total carbonyls emission concentrations with pure diesel fuel were 893.25 £gg/m3, with emission factors being 52.57 mg/bhp-hr or 218.44 mg/L-fuel. When 10 to 30% isobutanol mixture was added, total carbonyls concentrations ranged from 1108.21 to 2622.27 £gg/m3, with emission factors being 268.83 to 610.94 mg/L-fuel, or 68.93 to 175.25 mg/bhp-hr. The ozone formation potential of diesel engine with pure diesel fuel was 7132.72 g-O3/m3.When 10 to 30% isobutanol mixture was used, total ozone formation potential ranged from 8764.39 to 20168.73 g-O3/m3. Total carbonyls emissions were increased with increasing isobutanol contents. In summary, addition 10% isobutanol was an optimal blend, since both fuel saving and reductions of pollutant emissions can be achieved.
326

Sequence effects on the proton-transfer reaction of the guanine-cytosine base pair radical anion and cation

YEH, SHU-WEN 16 July 2012 (has links)
The formation of base pair radical anions and cations is closely related to many fascinating research fields in biology and chemistry such as genetic mutation, radiation-induced DNA damage and dynamics of charge transfer in DNA. However, the relevant knowledge so far mainly comes from studies on isolated base pair radical anions and cations, and their behavior in the DNA environment is less understood. In this study, we focus on how the nucleobase sequence affects the properties of the guanine¡Vcytosine (G:C) base pair radical anion and cation. The energetic barrier and reaction energy for the proton transfer along the N1(G)¡VH¡E¡E¡EN3(C) hydrogen bond and the stability of (G:C)¡E (i.e., electron affinity and ionization potential of G:C) embedded in different sequences of base-pair trimer were evaluated using density functional theory and two-layer ONIOM method. The computational results demonstrated that the presence of neighboring base pairs has an important influence on the behavior of (G:C)¡E in the gas phase. The excess electron and positive hole were found to be localized on the embedded G:C and the charge leakage to neighboring base pairs was very minor in all of the investigated sequences. Accordingly, the sequence behavior of the proton transfer reaction and the stability of (G:C)¡E is chiefly governed by electrostatic interactions with adjacent base pairs. However, the effect of base stacking, due to its electrostatic nature, is severely screened upon hydration, and thus, the sequence dependence of the properties of (G:C)¡E in aqueous environment becomes relatively weak and less than that observed in the gas phase. The effect of geometry relaxation associated with neighboring base pairs as well as the possibility of proton transfer along the N2(G)¡VH¡E¡E¡EO2(C) channel have also been investigated. The implications of the present findings to the electron transport and radiation damage of DNA are discussed.
327

Design and Implementation of a Microcontroller-based Axon Emulator Circuit

Chen, Jing-yuan 15 August 2012 (has links)
In recent years, there has been significant research and development in the area of advanced circuits and systems for the recording of the electroneurogram (ENG) from peripheral nerve signals. This thesis presents an emulator of peripheral nerve for the testing of bio-potential recording systems under development reducing the need for early in vitro experiments and providing reproducible results. The emulator can be configured as an artificial nerve for ENG recording, which emulates the natural behavior of a nerve and provides an interface to the circuit under test. It is representative of a real nerve in terms of impedances, electrode voltages and action potential propagation characteristics as seen when recording from a nerve cuff electrode. Its dynamic behavior is controlled by a series of linked microcontrollers. The emulator provides different user selectable scenarios including single fiber action potential (SFAP), compound action potential propagation following stimulation (CAP), naturally occurring nerve traffic, and additional interference. This emulator circuit is designed using MATLAB and Cadence Spectre to perform circuit simulation. Measured results of the emulator based on a PCB including microcontrollers (PIC series, Microchip) are reported.
328

Thermomechanical modeling of a shape memory polymer

Ghosh, Pritha B. 15 May 2009 (has links)
The aim of this work is to demonstrate a Helmholtz potential based approach for the development of the constitutive equations for a shape memory polymer undergoing a thermomechanical cycle. The approach is motivated by the use of a simple spring-dashpot type analogy and the resulting equations are classified as state-equations and suitable kinetic equations for the recoverable-energy elements and the dissipative elements in the model respectively. These elements have mechanical properties which vary with temperature. The governing equations of the model are developed starting from the basic conservation laws together with the laws of thermodynamics. The entire set of equations are written in a state-evolution form as a set of ordinary differential equations to be solved using Matlab. It is shown that the results of the simulation in Matlab are in qualitative and quantitative agreement with experiments performed on polyurethane. Subsequently, we study the dependence of the yield-stress on temperature to be similar and different functions of heating or cooling processes.
329

Spectroscopic and ab initio studies on the conformations and vibrational spectra of selected cyclic and bicyclic molecules

Al-Saadi, Abdulaziz A. H. 15 May 2009 (has links)
The structure, potential energy functions and vibrational spectra of several cyclic and bicyclic molecules have been investigated using several spectroscopic techniques and high-level ab initio and density functional theory (DFT) calculations. Laser induced fluorescence and Raman spectroscopies were used to study the conformation of 2- indanol in the electronic ground and excited states. These, along with detailed ab initio calculations, confirmed the existence of four different stable conformations with the one undergoing an intermolecular hydrogen bonding being the most stable. A theoretical two-dimensional surface in terms of the ring-puckering and the hydroxyl group internal rotation vibrations was constructed. This work was extended to obtain preliminary insights on the conformations and ring-puckering frequencies of 3-cyclopenten-1-ol using ab initio and DFT calculations. Infrared and Raman spectra were also utilized to study the structures and vibrational spectra of -crotonolactone and 2,3-cyclopentenopyridine (pyrindan). Ab initio results showed that -crotonolactone is rigidly planar in the electronic ground state and has a nearly harmonic ring-puckering potential function. The calculated vibrational levels were shown to be in very good agreement with the experimental ring-puckering frequency from vapor-phase Raman observations. The structures, vibrational spectra, and potential energy functions of several cyclic molecules were reinvestigated using high-level ab initio computations, and detailed vibrational analyses based on DFT-B3LYP calculated frequencies were also carried out. A number of new insights were presented by re-evaluating the available experimental data for several cyclopentenes, silacyclobutanes and silacyclopentenes. It was found that the vibrational spectra of some deuterated cyclopentenes possess extensive coupling between several ring modes and other low-frequency modes. Reassignments of these spectra have been proposed. Frequencies from DFT-B3LYP calculations showed very good agreement with the experimental values for silacyclobutane and its derivatives. The presence of silicon and halogen atoms did not affect the accuracy of the DFT calculations. In addition, the ring-puckering potential energy function for silacyclopent-2-ene was studied and alternative assignments of the far-infrared results were proposed. The new assignments are in good agreement with computational results. Silacyclopent-2-ene and its -1,1-d2 isotopomer were shown to be slightly puckered with barriers of less than 50 cm-1.
330

MultiTrack: A Delay and Cost Aware P2P Overlay Architecture

Podduturi, Vinith 2009 August 1900 (has links)
The rapid growth of peer-to-peer (P2P) networks in the past few years has brought with it increases in transit cost to Internet Service Providers (ISPs), as peers exchange large amounts of traffic across ISP boundaries. This ISP oblivious behavior has resulted in misalignment of incentives between P2P networks|that seek to maximize user quality|and ISPs|that would seek to minimize costs. Can we design a P2P overlay that accounts for both ISP costs as well as quality of service, and attains a desired tradeoff between the two? We design a system, which we call MultiTrack, that consists of an overlay of multiple kinds of Trackers whose purpose it is to align these goals. We have mTrackers that form an overlay network among themselves, and split demand from users among different ISP domains while trying to minimize their individual costs (delay plus transit cost) in their ISP domain. We design the signals in this overlay of mTrackers in such a way that potentially competitive individual optimization goals are aligned across the mTrackers. The system could also have a tTracker that acts as a gateway into the system, and ensures that users who are from different ISP domains have a fair chance of being admitted into the system, while keeping costs in check. We prove analytically that our system is stable and achieves maximum utility with minimum cost. We validated our system design using Matlab simulations, and implemented the system on ns-2 in order to conduct more realistic experiments. We showed that our system significantly outperforms two types of systems, one in which user delay is the only control dimension (forwarding traffic without considering the transit prices) and a second system in which transit prices are the only control dimension (localized traffic only). Thus, we conclude that our system, that operates in two dimensions: (1) user delay and (2) transit prices, results in minimum cost and maximum utility for fixed capacity of the system.

Page generated in 0.1091 seconds