• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • 1
  • Tagged with
  • 7
  • 7
  • 6
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Correlation between physical properties and flowability Indicators for fine powders

Bodhmage, Abhaykumar Krishnarao 03 July 2006
Approximately 80% of pharmaceutical products and the ingredients required for their manufacture are in powder form. The solid dosage form (tablets and capsules) is manufactured by either dry-blending of fine powder ingredients or combining the ingredients in a wet granulation step, followed by drying. Arching, ratholing, caking, segregation and flooding are some of the commonly encountered flow problems in the handling of fine powders. These problems lead to losses worth thousands of dollars at production scale. Poor powder flowability is a consequence of the combined effects of many variables, including improper equipment design, particle size, size distribution, shape, moisture content and surface texture. In the present work, a systematic study has been performed to determine the relationship between the flowability of fine powders and their physical properties of mean size and size distribution, density and shape.<p> Flowability studies were done on six different powders: the NutraSweet® Brand sweetener (aspartame), Respitose ML001, Alpha-D-Lactose monohydrate, the pharmaceutical binder Methocel (R) F50 Premium Hydroxypropyl methylcellulose- HPMC, a placebo pharmaceutical granulate, and common pastry flour. Scanning electron microscopy (SEM) and stereomicroscopy were used for particle shape and size analysis. Particle size distribution was determined using the laser light scattering technique. Powder flowability was measured using shear strength, angle of repose, and tapped-to-bulk density measurements. A novel method of measuring the dynamic angle of repose using electrical capacitance tomography (ECT) was developed. <p> Analysis of the images from microscopy revealed that the particles of aspartame and HPMC powders were elongated, the particles of ML001, pastry flour and lactose monohydrate powders were irregular, and the particles of placebo granulate were nearly spherical. Particle size was found to be the most reliable indicator of powder flowability, with decreasing particle size corresponding to lower flowability; however other parameters such as particle elongation and irregularity, were also found to have an influence on powder flowability. Although HPMC and pastry flour had similar particle sizes, they exhibited differences in flowability. This can be explained by the greater irregularity of the flour particles. Particle irregularity may cause mechanical interlocking between the particles, thus reducing powder flowability. ECT was found to be a promising non-intrusive tool for the measurement of the dynamic angle of repose. Unlike other methods for the measurement of dynamic angle of repose, the results obtained from ECT were not influenced by the effect of end caps. The present technique could be used by pharmaceutical industries in process analytical technology (PAT) for the detection and elimination of potential flow problems early in the manufacturing process.
2

Correlation between physical properties and flowability Indicators for fine powders

Bodhmage, Abhaykumar Krishnarao 03 July 2006 (has links)
Approximately 80% of pharmaceutical products and the ingredients required for their manufacture are in powder form. The solid dosage form (tablets and capsules) is manufactured by either dry-blending of fine powder ingredients or combining the ingredients in a wet granulation step, followed by drying. Arching, ratholing, caking, segregation and flooding are some of the commonly encountered flow problems in the handling of fine powders. These problems lead to losses worth thousands of dollars at production scale. Poor powder flowability is a consequence of the combined effects of many variables, including improper equipment design, particle size, size distribution, shape, moisture content and surface texture. In the present work, a systematic study has been performed to determine the relationship between the flowability of fine powders and their physical properties of mean size and size distribution, density and shape.<p> Flowability studies were done on six different powders: the NutraSweet® Brand sweetener (aspartame), Respitose ML001, Alpha-D-Lactose monohydrate, the pharmaceutical binder Methocel (R) F50 Premium Hydroxypropyl methylcellulose- HPMC, a placebo pharmaceutical granulate, and common pastry flour. Scanning electron microscopy (SEM) and stereomicroscopy were used for particle shape and size analysis. Particle size distribution was determined using the laser light scattering technique. Powder flowability was measured using shear strength, angle of repose, and tapped-to-bulk density measurements. A novel method of measuring the dynamic angle of repose using electrical capacitance tomography (ECT) was developed. <p> Analysis of the images from microscopy revealed that the particles of aspartame and HPMC powders were elongated, the particles of ML001, pastry flour and lactose monohydrate powders were irregular, and the particles of placebo granulate were nearly spherical. Particle size was found to be the most reliable indicator of powder flowability, with decreasing particle size corresponding to lower flowability; however other parameters such as particle elongation and irregularity, were also found to have an influence on powder flowability. Although HPMC and pastry flour had similar particle sizes, they exhibited differences in flowability. This can be explained by the greater irregularity of the flour particles. Particle irregularity may cause mechanical interlocking between the particles, thus reducing powder flowability. ECT was found to be a promising non-intrusive tool for the measurement of the dynamic angle of repose. Unlike other methods for the measurement of dynamic angle of repose, the results obtained from ECT were not influenced by the effect of end caps. The present technique could be used by pharmaceutical industries in process analytical technology (PAT) for the detection and elimination of potential flow problems early in the manufacturing process.
3

The morphological, flow and failure characteristics of fractionated natural bulk material : evaluation of flowability of fractionated powdered liquorice using a specially designed flowmeter : the particle morphology was assessed by computer image analysis and the failure properties by shear cell testing

Zolfaghari, Mohammad Esmail January 1986 (has links)
With the technological development in biologically orientated industries more and more natural products in powdered form are being handled and processed. Three differently comminuted liquorice rhizome products were classified into 23 narrow size fractions to investigate the particle and bulk characteristics of the material, and to study the influence of particle shape on powder flowability. The morphology of the fibrous particulate was investigated by using a Quantimet 720 Image Analyser. The perimeter (P), projected area (A), breadth (B), length (L), horizontal and vertical projected lengths (P V and Pi) and the horizontal and vertical Feret diameters (FV FH) were measured from which four dimensionless shape factors were evaluated, [P2/47rA, PHxPV/A, L/B, FV/FH]. The surface texture of the particles was measured by fractal analysis. The influence of particle shape and size on the mean flow rate, coefficient of flow variation and flow uniformity were measured using a specially designed inclined tube flowmeter. The failure properties of powdered liquorice when sheared under known normal compressive stresses were measured and from a series of yield loci the unconfined yield strength, major consolidation stress and effective angle of internal friction were obtained. The effects of particle shape and size on the angle of internal friction, wall friction, bulk and packed densities were. investigated and the experimental correlations expressed in terms of mathematical equations. These relationships, together with the failure function plots, indicate that comminuted liquorice powder behaves as a "simple" powder.
4

The morphological, flow and failure characteristics of fractionated natural bulk material. Evaluation of flowability of fractionated powdered liquorice using a specially designed flowmeter. The particle morphology was assessed by computer image analysis and the failure properties by shear cell testing.

Zolfaghari, Mohammad Esmail January 1986 (has links)
With the technological development in biologically orientated industries more and more natural products in powdered form are being handled and processed. Three differently comminuted liquorice rhizome products were classified into 23 narrow size fractions to investigate the particle and bulk characteristics of the material, and to study the influence of particle shape on powder flowability. The morphology of the fibrous particulate was investigated by using a Quantimet 720 Image Analyser. The perimeter (P), projected area (A), breadth (B), length (L), horizontal and vertical projected lengths (P V and Pi) and the horizontal and vertical Feret diameters (FV FH) were measured from which four dimensionless shape factors were evaluated, [P2/47rA, PHxPV/A, L/B, FV/FH]. The surface texture of the particles was measured by fractal analysis. The influence of particle shape and size on the mean flow rate, coefficient of flow variation and flow uniformity were measured using a specially designed inclined tube flowmeter. The failure properties of powdered liquorice when sheared under known normal compressive stresses were measured and from a series of yield loci the unconfined yield strength, major consolidation stress and effective angle of internal friction were obtained. The effects of particle shape and size on the angle of internal friction, wall friction, bulk and packed densities were. investigated and the experimental correlations expressed in terms of mathematical equations. These relationships, together with the failure function plots, indicate that comminuted liquorice powder behaves as a "simple" powder. / Darou-Pakhsh Pharmaceutical Company
5

Análise da escoabilidade de pós

Campos, Milene Minniti de 08 March 2012 (has links)
Made available in DSpace on 2016-06-02T19:56:46Z (GMT). No. of bitstreams: 1 4315.pdf: 4002019 bytes, checksum: a7b7282115bf939f257fd8a5748b615e (MD5) Previous issue date: 2012-03-08 / Universidade Federal de Sao Carlos / There are many industries which use powders somewhere in their production process, such as: food, pharmaceuticals, ceramics, cement and fertilizer industries. The knowledge of properties associated with the flowability of these materials is important, since the characteristics of the powders can go through amendments in processing. Thus, the evaluation of indexes of flowability and the identification of main factors which influence the powders flowability play an important role in the operation and design of industrial devices. The objective of this study was to evaluate the flowability properties of organic and inorganic powders, as well as analyze which factors interfered in these properties. The organic materials were represented by whole and skim milk powders, while alumina and ceramic powder were selected for the assessment of inorganic materials. The physical characterizations carried out were: display materials morphology at SEM (Scanning Electron Microscopy), size distribution, particle density, initial moisture content, aerated bulk density and tapped bulk density. The measured materials flowability properties were: angle of internal friction, effective angle of internal friction, angle of wall (galvanized steel) friction and flow index, all of them determined by Jenike's direct shear cell, Hausner ratio obtained from the values of tapped and aerated bulk densities; angle of repose, determined through the dropping of powder in an acrylic surface. In general, the results obtained, considering all methodologies employed for the determination of materials flowability, demonstrated that alumina, ceramic powder and whole milk powder, if compared to skim milk powder, presented lower indexes of flowability. If these materials were stored in silos made of galvanized steel, alumina and ceramic powder flowability would be more difficult than that of skim and whole milk powders. Thus, the results showed that the material physical properties interfere in powders flowability. The skim milk powder flowed more easily than whole milk powder, because higher fat content and smaller average particle size of whole milk powder decreased the flowability of this material in comparison to the skim milk powder. Likewise, despite they have similar composition, alumina presented lower flowability that ceramic powder, because this powder had larger average particle size and the powder presented fewer agglomerated particles. / Existem muitas indústrias que trabalham com pós em alguma parte de seu processo de produção, como: as alimentícias, as farmacêuticas, as cerâmicas, as de cimentos e as de fertilizantes. O conhecimento das propriedades associadas à escoabilidade destes materiais é importante, já que as características dos pós podem sofrer alterações no processamento. Desta forma, a avaliação de índices de escoabilidade e a identificação dos principais fatores que influenciam na escoabilidade de pós são informações que auxiliam as operações industriais e no projeto de equipamentos. Assim, o objetivo deste trabalho foi avaliar a escoabilidade de pós orgânicos e inorgânicos, analisando quais fatores interferiram nesta propriedade. Os materiais escolhidos para representarem os materiais orgânicos foram os leites em pó integral e desnatado, enquanto que a alumina e o pó cerâmico foram selecionados para a avaliação dos materiais inorgânicos. As caracterizações físicas realizadas foram: visualização da morfologia dos materiais no MEV, distribuição granulométrica, massa específica da partícula, teor de umidade inicial, densidade bulk aerada e densidade bulk compactada. A escoabilidade dos materiais foi determinada pelas medidas de: ângulo de atrito interno, ângulo de atrito interno efetivo, ângulo de atrito com a parede de aço galvanizado e índice de escoamento, todos eles determinados pelo cisalhamento direto nas células de Jenike; índice de Hausner obtidos a partir dos valores das densidades bulk compactada e aerada; ângulo de repouso, determinado através do escoamento do pó em uma superfície de acrílico. De maneira geral, os resultados obtidos, considerando-se todas as metodologias empregadas para a determinação da escoabilidade dos materiais, demonstraram que a alumina, o pó cerâmico e o leite em pó integral, se comparados ao leite em pó desnatado, apresentaram menores índices de escoabilidade. Se esses materiais fossem armazenados em silos feitos de aço galvanizado, o escoamento da alumina e do pó cerâmico seria mais difícil do que os leites em pó desnatado e integral. Assim, os resultados mostraram que as propriedades físicas do material interferem na escoabilidade dos pós. O leite em pó desnatado escoou mais facilmente que o leite em pó integral, pois o maior teor de gordura juntamente com o menor tamanho médio das partículas do leite em pó integral diminuíram a escoabilidade deste material em relação ao leite em pó desnatado. Da mesma forma, apesar das composições similares, a alumina apresentou menor escoabilidade que o pó cerâmico, pois este tinha partículas de maior tamanho médio e menos aglomeradas.
6

Torrefaction and grinding of lignocellulosic biomass for its thermochemical valorization : influence of pretreatment conditions on powder flow properties / Torréfaction et broyage de biomasse lignocellulosique pour sa valorisation thermochimique : influence des conditions de prétraitement sur les propriétés d'écoulement des poudres

Pachón-Morales, John Alexander 11 June 2019 (has links)
Une technologie prometteuse pour répondre à la demande croissante en énergie renouvelable est la gazéification de biomasse lignocellulosique pour la production de biocarburants de deuxième génération. Ce procédé nécessite une alimentation en biomasse sous forme de poudre. Les problèmes de convoyage et de manipulation liés à la faible coulabilité de la biomasse broyée sont un verrou pour l’industrialisation des procédés BtL. La torréfaction comme procédé de prétraitement, en plus d'augmenter densité énergétique de la biomasse, peut influencer également les propriétés des particules obtenues après broyage, et en conséquence, l’écoulement des poudres. L'évaluation de l'écoulement des poudres de biomasse sous différentes conditions de consolidation est essentielle pour concevoir des technologies de manipulation et de convoyage efficaces.L'objectif de ce travail est d'évaluer l'effet des conditions de torréfaction et de broyage sur l’écoulement de poudres de biomasse. Une première partie consiste en une étude expérimentale dans laquelle la coulabilité d'échantillons torréfiés sous différentes intensités a été évaluée à l'aide d'un appareil de cisaillement annulaire. La coulabilité est corrélée à l'intensité de la torréfaction (mesurée par la perte de masse globale) pour deux essences différentes. La forme des particules semble être le paramètre qui influence de manière prédominante la coulabilité des poudres à l'état consolidé. La caractérisation de la coulabilité à l’état non consolidée a été effectuée à l'aide d'un tambour rotatif par l’analyse des avalanches des poudres. Des corrélations entre les caractéristiques des particules et la coulabilité sont ainsi établies. La modélisation de l'écoulement de la biomasse à l'aide de la Méthode des Éléments Discrets (DEM) constitue une deuxième partie de cette recherche. La taille submillimétrique des particules de biomasse, ainsi que leur faible densité, leur forme allongée et leur comportement cohésif sont des défis pour l’implémentation d’un modèle de réaliste d’écoulement particulaire en DEM. Un modèle DEM des particules de biomasse est mis en œuvre à l'aide d'une représentation simplifiée (assemblement de sphères) à gros grains de la forme des particules, ainsi que d'un modèle de force cohésif. Une procédure systématique de calibration des paramètres DEM permet d'obtenir un ensemble de paramètres ajustés. L'évolution expérimentale des contraintes de cisaillement d’une poudre dans un état consolidé peut alors être reproduite de façon réaliste. De même, le comportement d’avalanche des poudres dans un tambour tournant est également bien reproduit par les simulations, de façon qualitative et quantitative. Ces résultats mettent en évidence le potentiel des simulations DEM pour étudier l'effet des caractéristiques des particules, qui sont influencées par la torréfaction et les conditions de broyage, sur le comportement d'écoulement de la biomasse en poudre. / Gasification of lignocellulosic biomass for production of second-generation biofuels is a promising technology to meet renewable energy needs. However, feeding and handling problems related to the poor flowability of milled biomass considerably hinder the industrial implementation of Biomass-to-Liquid processes. Torrefaction as pretreatment step, in addition to improving energy density of biomass, also affects the properties of the milled particles (namely size and shape) that significantly influence flow behavior. The evaluation of biomass flow characteristics under different flow conditions is essential to design efficient and trouble-free handling solutions.The aim of this work is to assess the effect of the torrefaction and grinding conditions on the biomass flow behavior. A first part consists of an experimental study in which the flow properties of samples torrefied under different intensities were obtained using a ring shear tester. Flowability is correlated to the intensity of torrefaction, as measured by the global mass loss, for two different wood species. Particle shape seems to be the predominant parameter influencing flowability of powders in a consolidated state. Characterization of non-consolidated flowability through avalanching analysis using an in-house rotating drum was also conducted. Correlations between particle characteristics and flow behavior are thus established.The modelling of biomass flow using the Discrete Element Method (DEM) constitutes a second major part of this research. Challenging aspects of biomass particle modeling are their submillimetric size, low density, elongated shape and cohesive behavior. A material DEM model is implemented using a simplified (multisphere) upscaled representation of particle shape, along with a cohesive contact model. A systematic calibration procedure results in an optimal set of DEM parameters. The experimental shear stress evolution and yield locus can then be realistically reproduced. The avalanching behavior of the powders is also well captured by simulations, both qualitatively and quantitatively. These results highlight the potential of DEM simulations to investigate the effect of particle characteristics, which are driven by torrefaction and grinding conditions, on the flow behavior of powdered biomass.
7

Génération par enrobage à sec de particules composites à propriétés d'usages contrôlées / Production of controlled-property composite particles at by dry particle coating process

Cavailles, Fanny 12 July 2016 (has links)
L’enrobage à sec par action mécanique permet de formuler des particules composites dont les fonctionnalités et les propriétés physiques, comme l’écoulement, sont améliorées et cela sans l’ajout de solvant ou de liant. Actuellement la plupart des procédés d’enrobage à sec sont conduits en mode discontinu. L’objectif de ce travail est donc de développer et d’étudier une opération d’enrobage à sec par un procédé continu innovant, une extrudeuse bi-vis corotative sans filière, constituant une rupture technologique dans son domaine. Dans le cadre de ce travail, des sphères de cellulose microcristalline, appelées particules hôtes sont enrobées avec soit des talcs de différentes granulométries soit du stéarate de magnésium, nommées particules invitées. Dans un premier temps, le comportement des particules hôtes est étudié dans le procédé. Les particules sorties du procédé sont analysées par microscopie électronique à balayage, par granulométrie laser et par voluménométrie. Pour la configuration de vis présentant que des éléments de transport, la vitesse de rotation des vis (25 à 200 rpm) et le débit d’alimentation (0,5 à 2 kg/h) choisis influencent le taux de remplissage dans le fourreau, et pour un taux supérieur à environ 14 % : la quantité de particules endommagées est négligeable. Un taux de remplissage faible favorise les frictions particules-particules ou particules-métal au niveau de l’entrefer. L’ajout de zones de mélanges dans la configuration des vis accentue ce phénomène de brisure par l’augmentation des contraintes de cisaillement. Par ailleurs, des masses retenues de la poudre dans le fourreau évoluent linéairement en fonction de la masse de poudre transportée en un tour de vis pour différentes configurations de vis. Ces relations laissent penser à l’existence d’un volume mort. Les mesures de distribution de temps de séjour mettent en évidence par l’application d’un modèle d’association de réacteurs idéaux, la présence d’écoulement piston et d’un volume mort. Dans un second temps, la faisabilité d’une opération d’enrobage à sec par le procédé étudié est analysée. Une couche d’enrobage continu de talc modifiant le comportement hydrophile des particules hôtes, est obtenue pour une vitesse de rotation de vis de 50 rpm et une configuration de vis cisaillante. Le type de particules invitées influence la morphologie de la couche d’enrobage : de type film avec le stéarate de magnésium et de type discret avec le talc micronisé. Néanmoins les propriétés de taille, d’écoulement, de compressibilité des particules composites sont semblables à celle des particules hôtes, seule la propriété de mouillabilité est modifiée. La présence de stéarate de magnésium diminue le temps de séjour des particules dans le procédé grâce à son caractère lubrifiant. / Dry particle coating with mechanical action allows the production of composite particles whose functionalities and physical properties, such as flowability, are improved thanks to the absence of solvent or binder. Currently, most of dry particle coating processes are carried out in a discontinous mode. The objective of this work is thus to develop and study a dry particle coating operation with a continuous innovative process, twin screw co-rotating extruder without die, constituting a technological rupture in this application field. For this, spherical particles of microcristalline cellulose, as host particles, are coated with either talc particles of two sizes or magnesium stearate particles (MgSt), as guest particles. Firstly, the host particles behaviour is studied in the process. The exiting particles are analyzed by scanning electronic microscopy, laser granulometry and tapping test. Regarding the transport configuration, the chosen screw speed (between 25 an 200 rpm) and the feed rate (between 0.5 and 2 kg/h) have an important influence on the filling level in the barrel. For a filling level superior to approximatly 14 %, the quantity of broken particles is not significant. A low filling level facilitates the particle-particle or particle-metal friction in the barrel gap. When more mixing zones are added to the screw configuration, the shear stresses increase and, therefore, the breakage particle phenomenon becomes more prominent. Futhermore, the retained powder mass increases linearly when the transported mass in one screw turn increases for all the screw configurations. These evolutions suggest the existence of a dead volume. The residence time distribution mesurements highlight, thanks to the application of flowing model, the presence of plug-flow and a dead volume. Secondly, the feasibility of using the process for dry particle coating is analyzed. A continuous coating layer of talc modifiying the hydrophilic behaviour of the host particles is obtained for a low screw rotation speed (50 rpm) and a screw configuration with one mixing zone. The type of guest particles influence the morphology of the coating layer: film layer with the MgSt particles and discontinous layer with the micronized talc. However, size, flow and compressibility of the coated particles are similar to the ones of the initial host particles, only the wettability properties are modified. The presence of MgSt decreases the particle mean residence time in the process thanks to its lubricant action.

Page generated in 0.0742 seconds