• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • Tagged with
  • 6
  • 6
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

On energy consumption of mobile cloud gaming using GamingAnywhere

Musinada, Suren January 2016 (has links)
In the contemporary world, there has been a great proliferation of using smart-phone devices and broadband wireless networks, the young generation using mobile gaming market is tremendously increasing because of the enormous entertainment features. Mobile cloud gaming is a promising technology that overcome the implicit restrictions such as computational capacity and limited battery life. GamingAnywhere is an open source cloud gaming system which is used in this thesis and calculate the energy consumption of mobile device when using GamingAnywhere. The aim of the thesis is to measure the power consumption of the mobile device when the game is streamed from the GamingAnywhere server to GamingAnywhere client. Total power consumption is calculated for four resolutions by using the hardware monsoon power monitoring tool and the individual components of mobile device such as CPU, LCD and Audio power are calculated by software PowerTutor. The memory usage of the mobile device is also calculated by using Trepn Profiler application when using GamingAnywhere. Based on the obtained results, it was found that there is an increase in power consumption and memory usage of the mobile device on client side when the resolution is varying from low to high. After mapping the results of the hardware with the software, it was identified that there is very small difference between the hardware results and software results from which we could estimate that the software PowerTutor can be used instead of hardware Monsoon power tool as the software is capable of calculating the power consumption of individual components of mobile device
2

Domination in Graphs Applied to Electric Power Networks

Haynes, Teresa W., Hedetniemi, Sandra M., Hedetniemi, Stephen T., Henning, Michael A. 01 July 2002 (has links)
The problem of monitoring an electric power system by placing as few measurement devices in the system as possible is closely related to the well-known vertex covering and dominating set problems in graphs. We consider the graph theoretical representation of this problem as a variation of the dominating set problem and define a set S to be a power dominating set of a graph if every vertex and every edge in the system is monitored by the set S (following a set of rules for power system monitoring). The minimum cardinality of a power dominating set of a graph G is the power domination number γP(G). We show that the power dominating set (PDS) problem is NP-complete even when restricted to bipartite graphs or chordal graphs. On the other hand, we give a linear algorithm to solve the PDS for trees. In addition, we investigate theoretical properties of γP(T) in trees T.
3

Techniques for Non-Intrusive Machine Energy and Health Modeling

AbuAli, Mohamed 28 September 2010 (has links)
No description available.
4

Mathematical representation and simulation of an ECMO pump : Focusing on device performance and indications of flow-induced complications / Matematisk representation och simulering av en ECMO pump : Inriktat på motorprestation och indikation av flödeskomplikation

Kardelind, Jonathan January 2022 (has links)
Extracorporeal membrane oxygenation (ECMO) is a medical treatment that aims to support patients' respiratory and circulatory systems by oxygenation of blood outside of the patient. The therapy exposes blood to an artificial environment, which increases the risk of clot formations in the blood. This thesis proposes a noninvasive method to detect the development of thrombi in the ECMO circuit (which may cause patient complications) by measuring the blood pump motor effect and blood flow. To show the feasibility of this approach, a code that calculates pump efficiency changes due to adjustments of flow resistance shall be written and tested with a mock-up of an extracorporeal life support (ECLS) circuit. Results indicate there exist different flow efficiency relations. Efficiency seems to be influenced by design; certain rotation speeds have higher efficiency than others. As flow increases, so do efficiency (for our values, 3-5 Litres per minute, LPM). For 3 LPM, the highest efficiency was achieved at around 2800 RPM; 4 and 5 LPM start with higher efficiency but decreases as RPM increases. It was concluded that it is possible to differentiate between various flow restrictions using power consumption assessments. Low resistance changes, reduction of cross-section area for flow by 10% on the inlet side, and 16% on the outlet side showed no difference in impeller turning speed nor flow out of the pump. / Extrakorporeal Membranoxygenering (ECMO) är en livräddande behandling för att syresätta patienters blod utanför kroppen vid svår andnings eller cirkulationssvikt. I ECMO-systemet utsätts blodet för en artificiell miljö som medför högre risk för koagulationsaktivering och blodproppsbildning. Detta arbete undersöker möjligheten att icke-invasivt mäta flödesresistanser (som proppar) utifrån att mäta förbrukningseffekten hos den elektriska blodpumpen i ECMO systemet. För att undersöka detta skrivs en kod för att ge en uppskattning av vid varierande flödesrestriktioner uppmätta värden. Dessa värden tas från en befintlig modell på KTH:s Strömningsfysiklaboratorium. Låga flödesrestriktioner påverkar varken flöde, motorrotationshastighet eller motorns effektförbrukning. Detta arbete fann att 10% av slangen till motorn och 16% av slangen från motorn kan vara täckt utan påverkan. Effektiviteten av pumpen varierar beroende på olika variabler. Detta arbete fann att effektiviteten ökar med ökat flöde 3 till 5 liter per minut (LPM). Det verkar även finnas indikationer för att effektiviteten beror på rotationer per minut (RPM), för 3 LPM fanns den högsta effektiviteten kring 2800 RPM, 4 LPM har sin högsta effektivitet vid samma område och 5 LPM har sin högsta effektivitet vid start och avtar därefter. Detta arbete fann att det är möjligt att beräkna flödesrestriktioner utifrån att kontinuerligt notera värdet på en elmätare kopplad till ECMO enheten.
5

Energy efficiency optimization in 28 nm FD-SOI : circuit design for adaptive clocking and power-temperature aware digital SoCs / Optimisation de l'efficacité énergétique en 28 nm-FD-SOI : conception de circuits d'horloge adaptative et de mesure puissance-température pour systèmes numériques sur puces

Cochet, Martin 06 December 2016 (has links)
L'efficacité énergétique est devenue une métrique clé de la performance des systèmes sur puce numériques, en particulier pour les applications tirant leur énergie de batteries ou de l'environnement. La miniaturisation technologique n'est plus suffisante pour atteindre les niveaux de consommation requis. Ce travail de recherche propose ainsi de nouvelles conceptions de circuits pour la génération d'horloge flexible, la mesure de puissance et de température ainsi que l'intégration de ces blocs au sein de systèmes sur puce complets.Le multiplieur de fréquence innovant en boucle ouverte proposé permet l'adaptation rapide de la fréquence générée (53MHz 0.5V - 889MHz 0.9 V). Sa surface réduite (981µm2) et faible consommation (0.45pJ/cycle à 0.5 V) facilitent son intégration dans des systèmes à basse consommation. Le capteur de puissance instrumente un convertisseur de tension switched-capacitor; validé sur deux architectures différentes, il permet une mesure de la puissance d'entrée et de sortie avec une précision de 2.5% à 6%. Enfin, un nouveau principe de capteur de température est proposé. Il exploite une méthode de calibration par body-biasing sur caisson n et un système numérique intégré pour la compensation de non-linéarité. Enfin, cette thèse illustre la manière dont ces circuits peuvent être intégrés pour assurer la gestion de consommation de systèmes complexes. Un travail de modélisation du body-biasing est proposé, illustrant sa complémentarité avec la gestion de tension d'alimentation. Puis trois exemples de stratégies de gestion de la consommation sont proposées au sein de systèmes complets. / Energy efficiency has become a key metric for digital SoC, especially for applications relying on batteries or energy harvesting. Hence, this work proposes new designs for on-chip flexible clock generator, power monitor and temperature sensor as well as the integration of those blocks within complete SoC.The novel open-loop clock multiplier architecture enables fast frequency scaling and is implemented to operate on the same voltage-frequency range as a digital core ((53MHz 0.5V - 889MHz 0.9 V). The achieved extremely low area (981µm2) and power consumption 0.45pJ/cycle 0.5 V) also ease its integration within low power SoC. The proposed power monitor instruments switched capacitor DC-DC converters, which are standard components of low voltage SoCs. The monitor has been demonstrated over two different converters topologies and provides a measurement of both the converter input and output power within 2.5% to 6% accuracy. Last, a new principle of temperature sensor is proposed. It leverages single n well body-biasing for calibration and integrated digital logic for large non-linearity correction. It is expected to achieve within 1C accuracy 0.1nJ / sample and 225 µm2 probe area. Then, this work illustrates how those circuits can be integrated within complex SoCs power management strategies. First, a modeling study of body biasing highlights the benefits it can provide in complement to voltage scaling, accounting for a wide temperature range. Last, three example of power management are proposed at SoC level.
6

Robust boosting via convex optimization

Rätsch, Gunnar January 2001 (has links)
In dieser Arbeit werden statistische Lernprobleme betrachtet. Lernmaschinen extrahieren Informationen aus einer gegebenen Menge von Trainingsmustern, so daß sie in der Lage sind, Eigenschaften von bisher ungesehenen Mustern - z.B. eine Klassenzugehörigkeit - vorherzusagen. Wir betrachten den Fall, bei dem die resultierende Klassifikations- oder Regressionsregel aus einfachen Regeln - den Basishypothesen - zusammengesetzt ist. Die sogenannten Boosting Algorithmen erzeugen iterativ eine gewichtete Summe von Basishypothesen, die gut auf ungesehenen Mustern vorhersagen. <br /> Die Arbeit behandelt folgende Sachverhalte: <br /> <br /> o Die zur Analyse von Boosting-Methoden geeignete Statistische Lerntheorie. Wir studieren lerntheoretische Garantien zur Abschätzung der Vorhersagequalität auf ungesehenen Mustern. Kürzlich haben sich sogenannte Klassifikationstechniken mit großem Margin als ein praktisches Ergebnis dieser Theorie herausgestellt - insbesondere Boosting und Support-Vektor-Maschinen. Ein großer Margin impliziert eine hohe Vorhersagequalität der Entscheidungsregel. Deshalb wird analysiert, wie groß der Margin bei Boosting ist und ein verbesserter Algorithmus vorgeschlagen, der effizient Regeln mit maximalem Margin erzeugt.<br /> <br /> o Was ist der Zusammenhang von Boosting und Techniken der konvexen Optimierung? <br /> Um die Eigenschaften der entstehenden Klassifikations- oder Regressionsregeln zu analysieren, ist es sehr wichtig zu verstehen, ob und unter welchen Bedingungen iterative Algorithmen wie Boosting konvergieren. Wir zeigen, daß solche Algorithmen benutzt werden koennen, um sehr große Optimierungsprobleme mit Nebenbedingungen zu lösen, deren Lösung sich gut charakterisieren laesst. Dazu werden Verbindungen zum Wissenschaftsgebiet der konvexen Optimierung aufgezeigt und ausgenutzt, um Konvergenzgarantien für eine große Familie von Boosting-ähnlichen Algorithmen zu geben.<br /> <br /> o Kann man Boosting robust gegenüber Meßfehlern und Ausreissern in den Daten machen? <br /> Ein Problem bisheriger Boosting-Methoden ist die relativ hohe Sensitivität gegenüber Messungenauigkeiten und Meßfehlern in der Trainingsdatenmenge. Um dieses Problem zu beheben, wird die sogenannte 'Soft-Margin' Idee, die beim Support-Vector Lernen schon benutzt wird, auf Boosting übertragen. Das führt zu theoretisch gut motivierten, regularisierten Algorithmen, die ein hohes Maß an Robustheit aufweisen.<br /> <br /> o Wie kann man die Anwendbarkeit von Boosting auf Regressionsprobleme erweitern? <br /> Boosting-Methoden wurden ursprünglich für Klassifikationsprobleme entwickelt. Um die Anwendbarkeit auf Regressionsprobleme zu erweitern, werden die vorherigen Konvergenzresultate benutzt und neue Boosting-ähnliche Algorithmen zur Regression entwickelt. Wir zeigen, daß diese Algorithmen gute theoretische und praktische Eigenschaften haben.<br /> <br /> o Ist Boosting praktisch anwendbar? <br /> Die dargestellten theoretischen Ergebnisse werden begleitet von Simulationsergebnissen, entweder, um bestimmte Eigenschaften von Algorithmen zu illustrieren, oder um zu zeigen, daß sie in der Praxis tatsächlich gut funktionieren und direkt einsetzbar sind. Die praktische Relevanz der entwickelten Methoden wird in der Analyse chaotischer Zeitreihen und durch industrielle Anwendungen wie ein Stromverbrauch-Überwachungssystem und bei der Entwicklung neuer Medikamente illustriert. / In this work we consider statistical learning problems. A learning machine aims to extract information from a set of training examples such that it is able to predict the associated label on unseen examples. We consider the case where the resulting classification or regression rule is a combination of simple rules - also called base hypotheses. The so-called boosting algorithms iteratively find a weighted linear combination of base hypotheses that predict well on unseen data. We address the following issues:<br /> <br /> o The statistical learning theory framework for analyzing boosting methods.<br /> We study learning theoretic guarantees on the prediction performance on unseen examples. Recently, large margin classification techniques emerged as a practical result of the theory of generalization, in particular Boosting and Support Vector Machines. A large margin implies a good generalization performance. Hence, we analyze how large the margins in boosting are and find an improved algorithm that is able to generate the maximum margin solution.<br /> <br /> o How can boosting methods be related to mathematical optimization techniques?<br /> To analyze the properties of the resulting classification or regression rule, it is of high importance to understand whether and under which conditions boosting converges. We show that boosting can be used to solve large scale constrained optimization problems, whose solutions are well characterizable. To show this, we relate boosting methods to methods known from mathematical optimization, and derive convergence guarantees for a quite general family of boosting algorithms.<br /> <br /> o How to make Boosting noise robust?<br /> One of the problems of current boosting techniques is that they are sensitive to noise in the training sample. In order to make boosting robust, we transfer the soft margin idea from support vector learning to boosting. We develop theoretically motivated regularized algorithms that exhibit a high noise robustness.<br /> <br /> o How to adapt boosting to regression problems?<br /> Boosting methods are originally designed for classification problems. To extend the boosting idea to regression problems, we use the previous convergence results and relations to semi-infinite programming to design boosting-like algorithms for regression problems. We show that these leveraging algorithms have desirable theoretical and practical properties.<br /> <br /> o Can boosting techniques be useful in practice?<br /> The presented theoretical results are guided by simulation results either to illustrate properties of the proposed algorithms or to show that they work well in practice. We report on successful applications in a non-intrusive power monitoring system, chaotic time series analysis and a drug discovery process. <br><br> ---<br> Anmerkung:<br> Der Autor ist Träger des von der Mathematisch-Naturwissenschaftlichen Fakultät der Universität Potsdam vergebenen Michelson-Preises für die beste Promotion des Jahres 2001/2002.

Page generated in 0.0632 seconds