• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 6
  • 4
  • Tagged with
  • 22
  • 22
  • 22
  • 10
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • 6
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Small Signal Stability Analysis of a Power System with a Grid Connected Wind Powered Permanent Magnet Synchronous Generator (PMSG)

Balibani, Siva Kumar January 2015 (has links) (PDF)
Small signal oscillation has been always a major concern in the operation of power systems. In a generator, the electromechanical coupling between the rotor and the rest of the system causes it to behave in a manner similar to a spring mass damper system. Following any disturbance, such as sudden change in loads, actuations in the output of turbine and faults etc. it exhibits an oscillatory behaviour around the equilibrium state. The use of fast acting high gain AVRs and evolution of large interconnected power systems with transfer of bulk power across weak transmission links have further aggravated the problem of these low frequency oscillations. Small oscillations in the range of about 0.1Hz to 3.5Hz can persist for long periods, limiting the power transfer capability of the transmission lines. These oscillations can be reduced by incorporating auxiliary controllers on generator excitation system. Power System Stabilizers (PSSs) were developed to produce additional damping by modulating the generator excitation voltage. Designing effective PSS for all operating conditions especially in large interconnected power systems still remains a difficult and challenging task. More and more power electronic based controllers have been and will be used in power systems. Many of these controllers such as Static Var Compensators (SVCs), Static Synchronous Compensators (STATCOMs) and Unified Power Flow Controllers (UPFCs) etc., are incorporated in power transmission networks to improve its operational capability. In addition, some of the energy storage systems such as Battery Energy Storage systems (BESS), Super conducting Magnetic Energy Storage System (SMES) as well large non-conventional energy sources are also increasingly being integrated with the power grid. With large integration of these devices, there is a significant impact on system stability, more importantly on small signal oscillatory instability of the power system. This thesis primarily focuses on impact of such devices on small signal oscillatory stability of the power systems. More specifically in this thesis small signal stability analysis of a Single Machine Infinite Bus (SMIB) system with a grid connected wind powered Permanent Magnet Synchronous Generator (PMSG) has been presented. A SMIB system has been purposely chosen so that general conclusions can be obtained on the behaviour of the embedded STATCOM/Energy Source (ES) system on system stability. With a better understanding of the impact of such a system it would be probably possible to analyze more complicated multimachine power system and their impact on system stability. Small signal model of the complete system which comprises the generator, transmission network, inter connecting STATCOM, the wind power generator and all associated controllers has been developed. The performances of the system following a small disturbance at various operating conditions have been analyzed. To obtain quantitative estimates of the damping and synchronizing torques generated in the system, expressions for damping and synchronizing torque clients have been developed. With these analyses, the relative impact of the STATCOM and STATCOM with ES on system performance have been assessed. It is shown that with active and reactive power modulation capabilities effective and efficient control of small signal oscillations in power systems can be achieved.
22

Transient Analysis of EHV/UHV Transmission Systems for Improved Protection Schemes

Ravishankar, Kurre January 2012 (has links) (PDF)
Ever increasing demand for electricity, exploitation of large hydro and nuclear power at remote location has led to power evacuation by long EHV/UHV transmission systems. This thesis concentrates on transient analysis of EHV/UHV transmission systems for improved planning and protection. In this thesis, the uncontrolled and controlled switching methods to limit the switching surges during energization of 765kV and 1200k VUHV transmission lines are studied. The switching surge over voltages during the energization of series compensated line are compared with uncompensated line. A Generalized Electromagnetic Transients Program has been developed. The program incorporates specific models for studying the effectiveness of various means for control of switching surge over voltages during UHV transmission line energization and also simulation of various types of faults. Since power grids may adopt next higher UHV transmission level 1200kV, these studies are necessary for insulation coordination as well as transmission line protection relay settings. A new fault detection/location technique is presented for transmission line using synchronized fundamental voltage and current phasors obtained by PMUs at both ends of line. It is adaptive to fault resistance, source impedance variation, line loading and fault incidence angle. An improved Discrete Fourier Transform (DFT) algorithm to estimate and eliminate the decaying dc component in a fault current signal is proposed for computing the phasors. The settings for digital distance relays under different operating conditions are obtained. The relay should operate faster and be more sensitive to various faults under different conditions without loosing selectivity. An accurate faulted transmission line model which considers distributed shunt capacitance has been presented. The relay trip boundaries are obtained considering transmission line model under realistic fault conditions. For different loading conditions ideal relay characteristic has been developed. The obtained trip boundaries can be used for proper settings of practical relay. An adaptive relaying scheme is proposed for EHV/UHV transmission line using unsynchronized/synchronized fundamental voltage and current phasors at both ends of line. For fault location, the redundancy in equations is achieved by using two kinds of Clarke’s components which makes the calculations non-iterative and accurate. An operator for synchronization of the unsynchronized measurements is obtained by considering the distributed parameter line model. The distance to fault is calculated as per the synchronized measurements. Support Vector Machine(SVM) is used for high speed protection of UHV line. The proposed relaying scheme detects the fault and faulted phase effectively within few milli seconds. The current and voltage signals of all phases at the substation are fed to SVM directly at a sampling frequency of 1.0kHZi.e20 samples/cycle . It is possible to detect faulted phase with in 3msec, using the data window of 1/4th cycle. The performance of relaying scheme has been checked with a typical 765kV Indian transmission System which is simulated using the developed EMTP.

Page generated in 0.0998 seconds