Spelling suggestions: "subject:"power amplifier."" "subject:"lower amplifier.""
91 |
The Design of The Active Integrated AntennasLin, Yan-ting 02 September 2010 (has links)
This study is focus on the integration and miniaturess of the active circuit and antennas. Recently, the monolithic microwave integrated circuits have been mature in communication markets and the associated handsets are interesting in the quality and profile. The antenna plays a role as a radiator in wireless system. Therefore, the performance dominates the quality of communication. The aspect of the antenna usually occupies the majority communication hardware¡¦s area. Comparing many front end circuit elements, the challenges in the antennas will be more crucial. Therefore, it has well merits in designing high integration and bandwidth antennas.
Based on the integration of the active circuits stage and antennas, this work presents the aperture coupled active antenna with harmonic suppression and broadband dual feeds circularly polarized patch antenna. Utilizing the bented aperture and insertion of narrow rectangular slots on excitation edge for shifting the high order harmonic components from the active stage, the harmonic suppression characterization is implemented by the above approach. The other active antenna, braodband dual feeds circularly polarized antenna, is achieved with spatial power combining. The subject aims the different excitated patch structures and replacing the periodic feeding lines as active circuits in the discussion. Relative to the conventional 50 Ohm feeds, the mechanics of the feeds are modified with stepped impedance resonators and stubs at the same physical wave length condition for achieving the integration of the antenna and the circuit. Besides, this antenna can exhibit excellent behavior and compact the size in the effective frequency range.
|
92 |
Energy-Efficient RF Transmitter and Receiver Using Injection-Locked OscillatorsChen, Chi-Tsan 30 July 2012 (has links)
Future wireless communication systems will have higher data transmission rates and energy efficiencies than those used today. This fact raises serious challenges to the design of conventional transceiver architectures. This doctoral research develops energy-efficient RF transmitters and receivers for next-generation wireless communications. It begins with a theoretical analysis of the injection locking of oscillators and a modified Class-E power amplifier (PA) for use in developing the proposed transmitter and receiver. Based on the presented theory, a novel envelope elimination and restoration (EER)/polar transmitter using injection-locked oscillators (ILOs) and a novel cognitive polar receiver using two ILO stages are proposed. The EER/polar transmitter combines the approaches of EER/polar modulation and injection locking to achieve linear amplification with a high gain and high efficiency. Experimental results demonstrate its effectiveness for delivering WCDMA and EDGE signals. Additionally, the cognitive polar receiver utilizes two ILO stages to extract the modulation envelope and phase components of a received nonconstant envelope modulation signal without using a phase-locked loop (PLL)-based carrier recovery circuit. Experiments are conducted to verify the feasibility of the novel architecture by performing £k/4 DQPSK and QPSK demodulation. Rigorous theoretical analysis and experimental verification prove that both the proposed transmitter and the receiver are effective for energy-efficient wireless communications.
|
93 |
High efficiency switching CMOS power amplifiers for wireless communicationsLee, Ockgoo 13 November 2009 (has links)
High-efficiency performance is one of the most important requirements of power
amplifiers (PAs) for wireless applications. However, the design of highly efficient CMOS
PAs for watt-level applications is a challenging task. This dissertation focuses on the
development of the design method for highly efficient CMOS PAs to overcome the
fundamental difficulties presented by CMOS technology.
In this dissertation, the design method and analysis for a high-power and highefficiency
class-E CMOS PA with a fully integrated transformer have been presented.
This work is the first effort to set up a comprehensive design methodology for a fully
integrated class-E CMOS PA including effects of an integrated transformer, which is
very crucial for watt-level power applications. In addition, to improve efficiency of
cascode class-E CMOS PAs, a charging acceleration technique is developed. The method
accelerates a charging speed to turn off the common-gate device in the off-state, thus
reducing the power loss. To demonstrate the proposed cascode class-E PA, a prototype
CMOS PA was implemented in a 0.18-μm CMOS process. Measurements show an
improvement of approximately 6% in the power added efficiency. The proposed cascode
class-E PA structure is suitable for the design of high-efficiency class-E PAs while it
reduces the voltage stress across the device.
|
94 |
A highly linear and efficient out-phasing transmitter for multi-band, multi-mode applicationsHur, Joonhoi 29 October 2010 (has links)
There have been many efforts to improve efficiency of transmitter while meeting stringent linearity requirement of modern communication system. Among the technology to enhance efficiency of linear transmitter, the out-phasing technologies, also called the linear amplification with nonlinear components (LINC), is considered as a promising technology. LINC has been studied long times, since it provides excellent linearity with high efficiency by allowing adopt high efficient switch-mode power amplifiers. However, The LINC transmitter has some technical challenges: linearity degradation due to amplitude and phase mismatches, efficiency degradation due to poor combining efficiency, and narrow frequency bandwidth due to output matching network of switching power amplifier.
In this thesis, some state-of-the-art techniques for solving the problems of LINC transmitters are presented. An unbalanced phase calibration technique compensates amplitude/phase mismatches between two parallel paths in the LINC system, and multi-level LINC (MLINC) and an uneven multi-level LINC (UMLINC) structure improve the overall power efficiency. And the reconfigurable Class-D switching PA enables multi-band operation with high efficiency and good linearity. With these techniques, the new multi-band out-phasing transmitter improves the efficiency without sacrificing the linearity performance.
|
95 |
Wide Bandgap Semiconductor (SiC & GaN) Power Amplifiers in Different ClassesAzam, Sher January 2008 (has links)
<p>SiC MESFETs and GaN HEMTs have an enormous potential in high-power amplifiers at microwave frequencies due to their wide bandgap features of high electric breakdown field strength, high electron saturation velocity and high operating temperature. The high power density combined with the comparably high impedance attainable by these devices also offers new possibilities for wideband power microwave systems. In this thesis, Class C switching response of SiC MESFET in TCAD and two different generations of broadband power amplifiers have been designed, fabricated and characterized. Input and output matching networks and shunt feedback topology based on microstrip and lumped components have been designed, to increase the bandwidth and to improve the stability. The first amplifier is a single stage 26-watt using a SiC MESFET covering the frequency from 200-500 MHz is designed and fabricated. Typical results at 50 V drain bias for the whole band are, 22 dB power gain, 43 dBm output power, minimum power added efficiency at P 1dB is 47 % at 200 MHz and maximum 60 % at 500 MHz and the IMD3 level at 10 dB back-off from P 1dB is below ‑45 dBc. The results at 60 V drain bias at 500 MHz are, 24.9 dB power gain, 44.15 dBm output power (26 W) and 66 % PAE.</p><p>In the second phase, two power amplifiers at 0.7-1.8 GHz without feed back for SiC MESFET and with feedback for GaN HEMT are designed and fabricated (both these transistors were of 10 W). The measured maximum output power for the SiC amplifier at Vd = 48 V was 41.3 dBm (~13.7 W), with a PAE of 32 % and a power gain above 10 dB. At a drain bias of Vd= 66 V at 700 MHz the Pmax was 42.2 dBm (~16.6 W) with a PAE of 34.4 %. The measured results for GaN amplifier are; maximum output power at Vd = 48 V is 40 dBm (~10 W), with a PAE of 34 % and a power gain above 10 dB. The SiC amplifier gives better results than for GaN amplifier for the same 10 W transistor.</p><p>A comparison between the physical simulations and measured device characteristics has also been carried out. A novel and efficient way to extend the physical simulations to large signal high frequency domain was developed in our group, is further extended to study the class-C switching response of the devices. By the extended technique the switching losses, power density and PAE in the dynamics of the SiC MESFET transistor at four different frequencies of 500 MHz, 1, 2 and 3 GHz during large signal operation and the source of switching losses in the device structure was investigated. The results obtained at 500 MHz are, PAE of 78.3%, a power density of 2.5 W/mm with a switching loss of 0.69 W/mm. Typical results at 3 GHz are, PAE of 53.4 %, a power density of 1.7 W/mm with a switching loss of 1.52 W/mm.</p> / Report code: LIU-TEK-LIC-2008:32
|
96 |
Quadrature predistortion using difference-frequency technique for base-station high-power amplifiersXiao, Mingxiang, January 2009 (has links)
Thesis (Ph. D.)--University of Hong Kong, 2010. / Includes bibliographical references (leaves 138-149). Also available in print.
|
97 |
Effectiveness of parallel diode linearizers on bipolar junction transistor and its use in dynamic linearization /Yu, Chi Sun. January 2009 (has links) (PDF)
Thesis (Ph.D.)--City University of Hong Kong, 2009. / "Submitted to Department of Electronic Engineering in partial fulfillment of the requirements for the degree of Doctor of Philosophy." Includes bibliographical references (leaves 129-134)
|
98 |
Parasitic-aware design and optimization of CMOS RF power amplifier /Choi, Kiyong. January 2003 (has links)
Thesis (Ph. D.)--University of Washington, 2003. / Vita. Includes bibliographical references (leaves 146-149).
|
99 |
Development of a high performance InGaP/GaAs HBT power amplifier for WCDMA applicationsPoek, Chi-ki., 卜志琦. January 2005 (has links)
published_or_final_version / abstract / toc / Electrical and Electronic Engineering / Master / Master of Philosophy
|
100 |
Μοντελοποίηση δορυφορικού καναλιού / Satellite channel modelingΖαχαρίας, Ηλίας 14 May 2007 (has links)
Σκοπός της διπλωματικής εργασία είναι η μελέτη και μοντελοποίηση ενός δορυφορικού καναλιού. Το δορυφορικό κανάλι, όπως κάθε κανάλι είναι ένα μη-γραμμικό σύστημα που χαρακτηρίζεται από ποικίλους και απρόβλεπτους παράγοντες που αλλοιώνουν την αρχική πληροφορία. Οι καιρικές συνθήκες που επικρατούν σε μια περιοχή για παράδειγμα επηρεάζουν το κανάλι προκαλώντας μεταβολή της ισχύος με τυχαίο τρόπο, γεγονός το οποίο δυσκολεύει την πρόβλεψη της συμπεριφοράς του. Για το λόγο αυτό έγινε προσπάθεια ανάπτυξης ενός δυναμικού μοντέλου που θα μπορεί να εξομοιώνει τη συμπεριφορά ενός τέτοιου καναλιού, δίνοντας τις πιθανές καταστάσεις στις οποίες μπορεί να βρεθεί. Συγκεκριμένα τα φαινόμενα τα οποία μελετήθηκαν είναι η εξασθένιση λόγω βροχής, η απορρόφηση από υγρασία και οξυγόνο και η τροποσφαιρική σκέδαση. Η κατασκευή του μοντέλου έγινε με τη χρήση και επεξεργασία μετεωρολογικών δεδομένων από την Ε.Μ.Υ. Επίσης, έγινε προσπάθεια μοντελοποίησης του ενισχυτή ισχύος (TWTA) ο οποίος συναντάται τόσο στο δορυφόρο όσο και κεντρικό σταθμό βάσης στη γη. / The objective of this project is the study and the modeling of a satellite channel. The satellite channel, as any satellite channel, is a non-linear system that is characterized by multiple and unpredictable factors that alter the initial information. The weather conditions that exist in an region affect the channel causing random power fluctuations and result in unpredictable performance. Thus, a dynamic model has been developed that simulates the performance of such a channel by predicting possible conditions that can arise. More specifically, the phenomena that have been studied is the rain attenuation, gaseous absorption and the tropospheric scintillation. The model was implemented through the use and analysis of meteorological data taken from the Hellenic National Meteorological Service. In addition, a high power amplifier (TWTA) that can be found both in the satellite and the central base station.
|
Page generated in 0.0666 seconds