• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Power Comparison of Some Goodness-of-fit Tests

Liu, Tianyi 06 July 2016 (has links)
There are some existing commonly used goodness-of-fit tests, such as the Kolmogorov-Smirnov test, the Cramer-Von Mises test, and the Anderson-Darling test. In addition, a new goodness-of-fit test named G test was proposed by Chen and Ye (2009). The purpose of this thesis is to compare the performance of some goodness-of-fit tests by comparing their power. A goodness-of-fit test is usually used when judging whether or not the underlying population distribution differs from a specific distribution. This research focus on testing whether the underlying population distribution is an exponential distribution. To conduct statistical simulation, SAS/IML is used in this research. Some alternative distributions such as the triangle distribution, V-shaped triangle distribution are used. By applying Monte Carlo simulation, it can be concluded that the performance of the Kolmogorov-Smirnov test is better than the G test in many cases, while the G test performs well in some cases.
2

排列檢定法應用於空間資料之比較 / Permutation test on spatial comparison

王信忠, Wang, Hsin-Chung Unknown Date (has links)
本論文主要是探討在二維度空間上二母體分佈是否一致。我們利用排列 (permutation)檢定方法來做比較, 並藉由費雪(Fisher)正確檢定方法的想法而提出重標記 (relabel)排列檢定方法或稱為費雪排列檢定法。 我們透過可交換性的特質證明它是正確 (exact) 的並且比 Syrjala (1996)所建議的排列檢定方法有更高的檢定力 (power)。 本論文另提出二個空間模型: spatial multinomial-relative-log-normal 模型 與 spatial Poisson-relative-log-normal 模型 來配適一般在漁業中常有的右斜長尾次數分佈並包含很多0 的空間資料。另外一般物種可能因天性或自然環境因素像食物、溫度等影響而有群聚行為發生, 這二個模型亦可描述出空間資料的群聚現象以做適當的推論。 / This thesis proposes the relabel (Fisher's) permutation test inspired by Fisher's exact test to compare between distributions of two (fishery) data sets locating on a two-dimensional lattice. We show that the permutation test given by Syrjala (1996} is not exact, but our relabel permutation test is exact and, additionally, more powerful. This thesis also studies two spatial models: the spatial multinomial-relative-log-normal model and the spatial Poisson-relative-log-normal model. Both models not only exhibit characteristics of skewness with a long right-hand tail and of high proportion of zero catches which usually appear in fishery data, but also have the ability to describe various types of aggregative behaviors.

Page generated in 0.0748 seconds