• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 5
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Integrated Active Filter Auxiliary Power Modules in Electrified Vehicle Applications

Hou, Ruoyu January 2016 (has links)
In this thesis, integrated active filter auxiliary power modules (AFAPMs) is presented in electrified vehicle applications. A topological evaluation is conducted particularly for the auxiliary power module (APM) applications in the electrified vehicles. Several primary and secondary base topologies are compared in terms of VA rating and performance. Multiple input/output topology configurations are compared with different connection configurations and control schemes. The MOSFET loss analysis is given. Based on the MOSFET loss analysis, the modular full bridge current doubler with input-series-output-parallel configuration presents better performance in terms of the switch efficiency and cost analysis. Bulk capacitor banks occupy large volume and impact the reliability in the traction inverter and HV battery charger in the vehicle applications. A capacitor-less design is relatively urgent for the next generation electrified vehicle. Active filter (AF) is one potential solution to reduce the corresponding dc-link capacitance. However, additional components are required which increases the system complicity and decreases its reliability. Hence, it would be great to integrate the AF into the LV battery charger for the vehicle applications. Based on the power switch requirements, the AFAPM is evaluated for traction inverter and HV battery charger, respectively. The evaluation result shows that the AFAPM for the HV battery charger system is a feasible and attractive solution. Furthermore, a simple and effective dual-mode dual-voltage charging system operating principle is proposed. The integrated AFAPM converter charges the LV battery when the vehicle is running and operates as an AF when the vehicle is connected to the grid and the HV battery is charging. Hence, the low-frequency second-order harmonic current is alleviated without a bulk capacitor bank or an extra AF circuit in the HV battery charger. For magnetic design, there is a trend toward integration and planarization. Two planar transformers are built for two different AFAPM prototypes. A minimized leakage inductance method is presented and implemented on a 20:1 center-tapped planar transformer. Three different integrated AFAPM converters are proposed. By applying these AFAPM converters, the required extra components to form the AF for the HV battery charger are reduced and thus the cost, size and weight for the dual-voltage charging system in the electrified vehicle applications can be reduced. Two prototypes are built. The experiments show promising results confirming the effectiveness of the proposed converters. / Dissertation / Doctor of Philosophy (PhD)
2

Modélisation multiphysique d'un assemblage de puissance haute température destiné à l'environnement aéronautique / Multiphysics modeling of high temperature power module for aeronautical applications

Youssef, Toni 04 November 2016 (has links)
Le principal défi auquel sont confrontés aujourd'hui les équipementiers aéronautiques est d'augmenter l'utilisation des systèmes électriques à bord de l'avion. De nos jours, le remplacement des systèmes hydrauliques par des actionneurs électriques conduit à placer les systèmes électriques dans un environnement hostile, par exemple dans la nacelle du moteur. L'équipement est soumis à des contraintes sévères telles que des températures élevées et basses, un cycle thermique étendu, une humidité élevée et une basse pression. En conséquence, des efforts doivent être faits pour réduire le poids et le volume du convertisseur de puissance sans perdre ses performances. Pour atteindre cet objectif, la conception de modules de puissance doit permettre un haut niveau d'intégration, d'efficacité et de fiabilité. On s’intéresse en particulier aux dommages causés par la fatigue qui ont une influence significative sur les performances électriques de ces modules. Les tests de performance liés à la fatigue restent des efforts coûteux pour l'équipement aéronautique. Un nombre fini de tests destructifs, par vieillissement accéléré, peut être effectué pour un nombre assez faible de configurations. Le but de ces tests est d'étudier les modes de défaillance apparaissant lors du vieillissement accéléré. Par conséquent, des simulations numériques ont été envisagées, facilement évolutives et utilisables pour un grand nombre de configurations, mais nécessitant des données d'essais expérimentaux. Dans ce manuscrit, quelques modes de défaillances sont étudiés. On propose une méthode numérique intégrant les contraintes principales dans les équipements, à savoir la simulation électrique, thermique et mécanique. Ces trois problèmes physiques ont des temps caractéristiques différents et sont fortement couplés avec un comportement non trivial. Pour optimiser l'utilisation des ressources et avoir une représentation pertinente du problème, un procédé couplé électrique 1D / thermique 3D / mécanique 3D a été implémenté sur un bus de cosimulation. Différents pas de temps, différents niveaux d'abstraction et différentes compétences sont utilisés pour fournir un modèle multiphysique de modules de puissance. / Today’s main challenge for aeronautical equipment manufacturers is to respond to the more electrical aircraft regulations. Moreover, there are many applications in aircraft area where high temperature technologies are needed. Nowadays, the replacement of hydraulic systems for electric ones leads to place the power inverters in a harsh environment, for example in the engine nacelle. The equipment is under high constraints such as high and low temperatures, wide temperature cycling, high humidity and low pressure. Combined to these environmental constraints, the new aircraft system is submitted to weight and operating cost reduction. As a consequence, efforts shall be done to reduce weight and volume of the power converter without losing its performance. To reach such a goal, the design of the converter must enable a high level of integration, efficiency and reliability. In particular, fatigue damage has a significant influence on such modules electrical power performance. And fatigue-related performance testing remains a costly endeavor for aeronautical equipment. A finite number of destructive tests can be carried out in specific facilities for a fairly low number of configurations. The purpose of these destructive tests is to investigate the failure modes appearing regarding this accelerated ageing. Therefore numerical simulations have been envisaged since non-destructive, easily evolving and usable for a high number of configurations, though needing data from experimental assays. In this study, we propose a method dealing with the main constraints for such equipment, i.e. electrical, thermal and mechanical simulation. Those three physical problems have different characteristic time and are strongly coupled with a non-trivial behavior. To optimize the resources usage and have a relevant representation of the problem, a 1D electrical / 3D thermal / 3D mechanical coupled method has been implemented over a co-simulation bus. Different time steps, different abstraction levels and different skills are used to provide predictions of the multiphysical fatigue behavior of power modules.
3

Electric Field Grading and Electrical Insulation Design for High Voltage,  High Power Density Wide Bandgap Power Modules

Mesgarpour Tousi, Maryam 19 October 2020 (has links)
The trend towards more and all-electric apparatuses and more electrification will lead to higher electrical demand. Increases in electrical power demand can be provided by either higher currents or higher voltages. Due to "weight" and "voltage" drop, a raise in the current is not preferred; so, "higher voltages" are being considered. Another trend is to reduce the size and weight of apparatuses. Combined, these two trends result in the high voltage, high power density concept. It is expected that by 2030, 80% of all electric power will flow through "power electronics systems". In regards to the high voltage, high power density concept described above, "wide bandgap (WBG) power modules" made from materials such as "SiC and GaN (and, soon, Ga2O3 and diamond)", which can endure "higher voltages" and "currents" rather than "Si-based modules", are considered to be the most promising solution to reducing the size and weight of "power conversion systems". In addition to the trend towards higher "blocking voltage", volume reduction has been targeted for WBG devices. The blocking voltage is the breakdown voltage capability of the device, and volume reduction translates into power density increase. This leads to extremely high electric field stress, E, of extremely nonuniform type within the module, leading to a higher possibility of "partial discharge (PD)" and, in turn, insulation degradation and, eventually, breakdown of the module. Unless the discussed high E issue is satisfactorily addressed and solved, realizing next-generation high power density WBG power modules that can properly operate will not be possible. Contributions and innovations of this Ph.D. work are as follows. i) Novel electric field grading techniques including (a) various geometrical techniques, (b) applying "nonlinear field-dependent conductivity (FDC) materials" to high E regions, and (c) combination of (a) and (b), are developed; ii) A criterion for the electric stress intensity based upon accurate dimensions of a power device package and its "PD measurement" is presented; iii) Guidelines for the electrical insulation design of next-generation high voltage (up to 30 kV), high power density "WBG power modules" as both the "one-minute insulation" and PD tests according to the standard IEC 61287-1 are introduced; iv) Influence of temperature up to 250°C and frequency up to 1 MHz on E distribution and electric field grading methods mentioned in i) is studied; and v) A coupled thermal and electrical (electrothermal) model is developed to obtain thermal distribution within the module precisely. All models and simulations are developed and carried out in COMSOL Multiphysics. / Doctor of Philosophy / In power engineering, power conversion term means converting electric energy from one form to another such as converting between AC and DC, changing the magnitude or frequency of AC or DC voltage or current, or some combination of these. The main components of a power electronic conversion system are power semiconductor devices acted as switches. A power module provides the physical containment and package for several power semiconductor devices. There is a trend towards the manufacturing of electrification apparatuses with higher power density, which means handling higher power per unit volume, leading to less weight and size of apparatuses for a given power. This is the case for power modules as well. Conventional "silicon (Si)-based semiconductor technology" cannot handle the power levels and switching frequencies required by "next-generation" utility applications. In this regard, "wide bandgap (WBG) semiconductor materials", such as "silicon carbide (SiC)"," gallium nitride (GaN)", and, soon, "gallium oxide" and "diamond" are capable of higher switching frequencies and higher voltages, while providing for lower switching losses, better thermal conductivities, and the ability to withstand higher operating temperatures. Regarding the high power density concept mentioned above, the challenge here, now and in the future, is to design compact WBG-based modules. To this end, the extremely nonuniform high electric field stress within the power module caused by the aforementioned trend and emerging WBG semiconductor switches should be graded and mitigated to prevent partial discharges that can eventually lead to breakdown of the module. In this Ph.D. work, new electric field grading methods including various geometrical techniques combined with applying nonlinear field-dependent conductivity (FDC) materials to high field regions are introduced and developed through simulation results obtained from the models developed in this thesis.
4

Evaluation of Active Capacitor Banks for Floating H-bridge Power Modules

Nguyen, Tam Khanh Tu 07 February 2020 (has links)
The DC-side floating capacitors in the floating power modules of power converters are subject to high voltage fluctuation, due to the presence of reactive harmonic components. Utilizing passive capacitors, as done in traditional methods, helps reduce the DC-bus voltage ripple but makes the system bulky. An active capacitor can be integrated with the floating H-bridge power modules to remove the effect of the ripple powers on the DC bus. The auxiliary circuit, which is much smaller in size compared to an equivalent passive capacitor, helps increase the power density of the system. This work focuses on the analysis of power components, and the extension of the active capacitor to the Perturbation Injection Unit (PIU), in which the DC side is highly distorted by multiple harmonic components. A control scheme is proposed to compensate for these multiple harmonics and balance the DC-link voltage in the active capacitor. Also, an equivalent DC-bus impedance model is introduced, which is more accurate than that in existing works. Simulation studies and evaluation of the design have verified the effectiveness of the active capacitor solution. / Single-phase power converters have been widely used in many applications such as electric vehicles, photovoltaic (PV) systems, and grid integration. Due to their popular application, there is a need to reduce the sizes and volumes while still maintaining good performances of the systems. One of the most effective methods, which is a subject in many research works, is to replace the bulky passive capacitor bank in a system by an active capacitor. The active capacitor is designed to absorb the ripple components in the DC side of the converters, which results in a constant DC-link voltage. In comparison to the passive capacitor solution, the active capacitor is much smaller in size but can give a better DC-bus ripple performance. Therefore, the active capacitor has become an attractive solution for the single-phase converters. The active capacitor for the traditional rectifier, where the DC side is directly connected to a load, has been intensively investigated in the past decade. However, there is limited research regarding the active capacitor for rectifiers with floating H-bridge power modules. This work extends the application of the active capacitor to the Perturbation Injection Unit (PIU), which is a grid-connected single-phase rectifier with floating H-bridge power modules. The selection of a suitable active capacitor for the PIU is based on the evaluation of various active capacitor banks. Limits in existing control schemes, which prevent the extension of the active capacitor to the PIU, are thoroughly studied. An effective voltage-mode control scheme is then proposed for the selected active capacitor, which makes it an attractive solution for the PIU. Moreover, limits of the DC-bus impedance analysis using traditional assumptions in existing works are investigated, and an improved DC-bus impedance model is proposed. Based on the operation conditions of the PIU and the proposed impedance model, the active capacitor's components can be properly designed, and improved configurations in terms of the equivalent impedance can be analyzed. Simulation results, as well as the design and evaluation of the active capacitor, demonstrate great improvements in terms of volume and weight over the traditional passive capacitor bank.
5

Contribution à l'étude de l'effet du vieillissement de modules de puissance sur leur comportement électrothermique / Contribution to the study of the effect of ageing of the power modules on their electrothermal behavior

Belkacem-Beldi, Ghania 23 June 2014 (has links)
Les travaux présentés dans cette thèse se focalisent sur l'étude de l’effet de dégradations des composants de puissance, plus particulièrement au niveau de l’environnement proche des puces (métallisations, connexions, brasures puces/DCB), sur le comportement électrique et thermique des puces ainsi que de leur assemblage. Pour ce faire nous avons cherché à étudier la répartition des courants et des températures à la surface de la puce à l’aide d’un modèle électrothermique 2D distribué. Nous avons aussi évalué l’effet de la dégradation des brasures dans le volume de l’assemblage, à l’aide cette fois d’un modèle thermique relié à la constitution de l’assemblage. La première partie de cette thèse consiste à mettre en place un modèle électrothermique distribué de puce MOSFET, qui tient compte à la fois du caractère distribué de la dissipation de la puissance et du couplage électrothermique en régime transitoire. Ce modèle électrothermique s’appuie sur un modèle électrique aux variables d’états et un modèle thermique par éléments finis couplé au modèle électrique. Les modèles électriques et thermiques ont été développés respectivement sous Matlab et sous CAST3M, et le couplage des deux modèles a été fait sous Simulink. Dans une deuxième partie, pour la validation des résultats des températures et pour l’analyse de l’effet du vieillissement et des dégradations (sur la distribution et la dynamique de température de la surface supérieure de la puce), une méthodologie de mesure rapide de température et un banc expérimental pour thermographie infrarouge ont été mis en place. Les difficultés rencontrées lors des mesures thermiques IR sous variation rapide de la température nous ont poussé à envisager d’autres méthodes d’analyse thermique. Enfin, nous avons cherché à évaluer la réponse impulsionnelle du composant testé en estimant, par des simulations thermiques, la fonction de transfert dans le domaine fréquentiel à l’aide du logiciel COMSOL Multiphysics. Nous avons également étudié la pertinence de modèles RC équivalents (réseau RC de Cauer). Ces modèles ont ensuite été utilisés pour rendre compte de différents modes de dégradation notamment cette fois au niveau des couches de brasures entre puce et DCB et entre DCB et semelle. Mots clef : Modules de puissance à semi-conducteur, Vieillissement, Métallisation, Modélisation électrothermique, Court-circuit, Distribution de courant et de température, Problème inverse, Caméra IR, Réseaux de Cauer. / The work presented in this thesis focus on the study of the effect of degradation of power components, especially at the near environment of chips (metallization, connections, solder chips / DCB), on the electrical and thermal behavior of the chips and their assembly. As a consequence, we studied the distribution of currents and temperatures on the chip surface with a 2D electrothermal distributed model. We also evaluated the effect of solder degradation in the volume of the assembly. Firstly, we developed an electrothermal distributed model of the MOSFET chip, which takes into account both the distributed power dissipation and the electrothermal coupling transient. This electrothermal model is based on an electrical model of state variables and thermal finite element model coupled to the electric model. Electrical and thermal models were developed respectively in Matlab and CAST3M whereas the two models coupling was done in Simulink . In the second part, to validate the results of temperatures and to analyze the effect of ageing and degradation on the distribution and dynamics of temperature of the upper surface of the chip, methodology rapid temperature measurement and an experimental bench for infrared thermography were established. The difficulties encountered in IR thermal measurements with rapid temperature change led us to consider other thermal analysis methods. Eventually, we assessed the impulse response of the tested component by estimating with thermal simulations, the transfer function in the frequency domain using the COMSOL Multiphysics software. Moreover we evaluated the relevance of RC equivalent models (RC Cauer network). These models were then used to account for different modes of degradation this time especially on the solder layer between the chip and DCB and between the DCB and sole. Keywords: Power Modules semiconductor, Ageing, Metallization, electrothermal modeling, Short Circuit, Power and temperature distribution, inverse problem, IR Camera, Cauer networks.

Page generated in 0.1394 seconds