• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 2
  • 1
  • Tagged with
  • 16
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

An evaluation of the vaccine-vector potential of thymidine kinase-disrupted recombinants of lumpy skin disease virus (South African vaccine

Wallace, David Brian. January 2006 (has links)
Thesis (Ph.D.)(Genetics)--University of Pretoria, 2006. / Includes summary. Available on the Internet via the World Wide Web.
12

Host range functions of poxvirus proteins are mediated by species- specific inhibition of the antiviral protein kinase PKR

Haller, Sherry LaRae January 1900 (has links)
Doctor of Philosophy / Department of Biology / Stefan Rothenburg / Vaccinia virus is the prototypic poxvirus that has been widely used as a model for investigating poxvirus biology and genetics. Like several members of the Poxviridae family, vaccinia virus can infect several different species including mice, cows and humans. Because the entry of poxviruses into a host cell relies on ubiquitously expressed surface molecules, which are found in many species, the ability of poxviruses to infect and replicate in different host cells primarily depends on their ability to subvert the host’s innate immune response. One critical barrier to infection is overcoming the general shutdown of protein translation initiated by the cellular protein kinase PKR. PKR detects cytoplasmic double-stranded (ds) RNA generated during infection by the replicating virus, which activates it to phosphorylate the alpha-subunit of the eukaryotic translation initiation factor 2 (eIF2) and suppress general translation. Poxviruses are large viruses with dsDNA genomes that encode around 200 genes. Several of these genes are known as host range genes and are important for replication in different host species and many interact with components of the host immune response to promote viral replication. Two genes in vaccinia virus, called E3L and K3L, are known inhibitors of PKR and have previously been shown to be important for virus replication in cells from different species. The molecular explanation behind their host range function, however, is unknown. The main goal of the research presented in this thesis is to determine the molecular mechanisms for the host range function of vaccinia virus E3L and K3L, particularly in different hamster host cells. Along with an analysis of vaccinia virus host range genes, we have used genome-wide comparisons between host-restricted poxviruses in the Leporipoxvirus genus to parse out the potential genomic determinants of host range restriction in this clade of poxviruses. The overarching aim of this thesis work is to better understand the molecular mechanisms for host range in poxviruses.
13

Immune responses against recombinant poxvirus vaccines that express full-length lyssavirus glycoprotein genes [electronic resource] /

Weyer, Jacqueline. January 2006 (has links)
Thesis (D. Phil. (Microbiology))--University of Pretoria, 2006. / Includes bibliographical references. Available on the Internet via the World Wide Web.
14

Sélection, Génération et Amélioration de Poxvirus Oncolytiques par Génie Génétique et Evolution Dirigée / Selection, generation and improvement of oncolytic poxviruses with viral engineering and directed evolution

Ricordel, Marine 22 January 2018 (has links)
Les virus oncolytiques sont une nouvelle classe d’agents thérapeutiques pouvant être une alternative au traitement des cancers. Plusieurs virus oncolytiques sont actuellement développés en clinique, néanmoins de nombreuses améliorations sont à apporter afin de créer une nouvelle classe de virus plus efficaces et moins toxiques. Le premier objectif de cette thèse a été d’améliorer la spécificité tumorale du virus de la vaccine via le ciblage de l’antigène MUC1 présenté à la surface des cellules tumorales. Pour cela un virus recombinant présentant à sa surface un fragment d’anticorps (scFv) dirigé contre l’antigène tumoral MUC1 a été construit et produit. Les tests in vitro n’ont toutefois pas permis de mettre en évidence un ciblage spécifique du virus recombinant. Un deuxième aspect de cette thèse a été de tester le potentiel oncolytique de virus de la famille des Poxviridae. Durant ce travail de thèse, les capacités oncolytiques de douze poxvirus, appartenant à 8 genres différents, ont été étudiés. Leurs effets sur la prolifération de cellules cancéreuses humaines ont été évalués. Les virus caractérisés par un effet oncolytique élevé ont été, par la suite, modifiés et armés par ingénierie virale afin d’augmenter leur efficacité. La dernière partie de cette thèse a été consacrée à la génération et la sélection de virus chimériques basées sur la méthode d’évolution dirigée. Cette méthode est utilisée pour mimer le processus naturel de sélection évolutif. Appliqué à la virothérapie oncolytique, ce procédé nous a permis de générer un nouveau virus oncolytique chimérique caractérisé par un potentiel anti-cancéreux amélioré. En résumé, cette thèse a permis, par des techniques d’ingénierie virale, par un criblage de nouveaux virus et par la méthode d’évolution dirigée, de créer et de sélectionner une nouvelle génération de poxvirus oncolytiques présentant une activité thérapeutique accrue avec un profil de toxicité atténué et pouvant être utilisés dans diverses indications thérapeutiques. / Oncolytiques viruses are a new class of therpeutic agents which could be an alternative for cancer treatment. Currently, several oncolytic viruses are evaluated in clinical trial, nevertheless improvements are needed to create a new class of more efficiente and less toxic viruses. The first objective of this thesis was to improved the vaccinia virus specificity through the targeting of the tumor-associated antigen MUC1. To address this goal, a recombinant virus expressing an scFv targeting the MUC1-protein was engineered and produced. However, in vitro, the demonstration of a specific targeting by the recombinant virus was not possible. A second aspect of this thesis work was to evaluate the oncolytic potential of Poxviridae family viruses. Oncolytic capacities of twelve viruses, belonging to eight genera, were evaluated. Their impact on human cancer cells was tested. In order to increase their efficacity, viruses with the highest oncolytic capacities were then modified and armed by genetic engineering. The third part of this work was devoted to the generation of chimeric viruses based on directed evolution process. This methodology is used to mimic the natural process of evolutionary selection. Applied to oncolytic virotherapy, this technique allowed the generation of a new chimeric oncolytic virus caracterised by an enhanced antitumoral potential. In summary, this thesis has allowed, through viral engineering, poxviruses screening and directed evolution methodology, the creation and selection of a new generation of oncolytic poviruses. These viruses demonstrate an increased therpeutic activity and greatest safety profil enabling their application in several therapeutic indication.
15

Immune responses against recombinant poxvirus vaccines that express full-length lyssavirus glycoprotein genes

Weyer, Jacqueline 22 September 2006 (has links)
Rabies is a fatal but preventable neurotropic disease of potentially all mammals. The disease is caused by lyssaviruses. Rabies is recognized as the 10th most common lethal infectious disease in the world, rendering it one of the most feared zoonotic diseases known to man. Nevertheless, rabies can be prevented by application of pre- or post exposure treatments. Rabies vaccines have been available since the time of Pasteur, more that one hundred years ago. Since, vaccine research focused on the development of safer and more effective vaccines. Topics of current interest in the field of rabies vaccinology were addressed in this study. A primary concern regarding the disease is human mortalities, in the range of 60 000, reported every year. Most of these are linked to exposure to rabid dogs. In addition, a great number of post exposure treatments are administered each year at great costs. Despite availability of efficacious biologics, several factors influence the optimal use and accessibility of these agents in the countries of interest, with cost and availability being the major contributing factors. A proven approach is mass oral vaccination of target animals, such as dogs, which indirectly infers protection to susceptible hosts, including man. Currently available vaccines present several disadvantages of use though, including issues of safety or doubtful stability. Safer but effective alternative vaccines that could be used in oral baits would be valuable. Here the use of two candidate host restricted poxvirus vaccine vectors were explored, particularly also in regard to oral innocuity. The construction, convenient isolation and use of a recombinant Lumpy skin disease virus (Neethling strain) expressing rabies virus glycoprotein in a mouse model were investigated. In addition, a recombinant Modified Vaccinia virus Ankara expressing rabies virus glycoprotein was prepared and tested as a vaccine in mice, dogs and raccoons. In both cases it was clear that the severe attenuation of these viruses did affect the efficacy of the recombinant vaccines in the non-permissive hosts. With the recombinant MVA a clear dosage effect could be shown, and equivalent humoral responses could only be attained at much higher titers of vaccine virus as with replication competent counterparts. Secondly, the cross-protection of rabies vaccines across the spectrum of lyssaviruses was addressed. Lyssaviruses can be divided into two groups based on sequence analysis and pathogenesis. Viruses belonging to the so-called phylogroup II, are the Mokola, Lagos and West Caucasian Bat viruses. Classic rabies biologics fail to fully protect against the viruses attributed to a lack of cross-neutralization. Here, cross-protection and cross-reactive immune responses induced by recombinant vaccinia viruses expressing rabies, Mokola or West Caucasian Bat virus glycoproteins, in single or dual combinations, were investigated. As expected, there was a lack of cross-protection of rabies and Mokola glycoprotein vaccines. There was also a clear lack of cross-protection of West Caucasian Bat virus glycoprotein vaccine and rabies and Mokola viruses. The dual antigen expressing vaccines did not appear to offer any additional protective effect in the tested model. The Mokola virus glycoprotein vaccines induced neutralizing antibody responses that significantly cross-neutralized Lagos Bat virus. / Thesis (PhD (Microbiology))--University of Pretoria, 2006. / Microbiology and Plant Pathology / unrestricted
16

Vaccinia Virus Binding and Infection of Primary Human Leukocytes

Byrd, Daniel James January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Vaccinia virus (VV) is the prototypical member of the orthopoxvirus genus of the Poxviridae family, and is currently being evaluated as a vector for vaccine development and cancer cell-targeting therapy. Despite the importance of studying poxvirus effects on the human immune system, reports of the direct interactions between poxviruses and primary human leukocytes (PHLs) are limited. We studied the specific molecular events that determine the VV tropism for major PHL subsets including monocytes, B cells, neutrophils, NK cells, and T cells. We found that VV exhibited an extremely strong bias towards binding and infecting monocytes among PHLs. VV binding strongly co-localized with lipid rafts on the surface of these cell types, even when lipid rafts were relocated to the cell uropods upon cell polarization. In humans, monocytic and professional antigen-presenting cells (APCs) have so far only been reported to exhibit abortive infections with VV. We found that monocyte-derived macrophages (MDMs), including granulocyte macrophage colony-stimulating factor (GM-CSF)-polarized M1 and macrophage colony-stimulating factor (M-CSF)-polarized M2, were permissive to VV replication. The majority of virions produced in MDMs were extracellular enveloped virions (EEV). Visualization of infected MDMs revealed the formation of VV factories, actin tails, virion-associated branching structures and cell linkages, indicating that infected MDMs are able to initiate de novo synthesis of viral DNA and promote virus release. Classical activation of MDMs by LPS plus IFN-γ stimulation caused no effect on VV replication, whereas alternative activation of MDMs by IL-10 or LPS plus IL-1β treatment significantly decreased VV production. The IL-10-mediated suppression of VV replication was largely due to STAT3 activation, as a STAT3 inhibitor restored virus production to levels observed without IL-10 stimulation. In conclusion, our data indicate that PHL subsets express and share VV protein receptors enriched in lipid rafts. We also demonstrate that primary human macrophages are permissive to VV replication. After infection, MDMs produced EEV for long-range dissemination and also form structures associated with virions which may contribute to cell-cell spread.

Page generated in 0.0307 seconds