• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 13
  • 5
  • 4
  • 2
  • 2
  • 1
  • Tagged with
  • 54
  • 16
  • 15
  • 12
  • 12
  • 11
  • 11
  • 11
  • 11
  • 9
  • 8
  • 8
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Effects Of Pozzolan Incorporation And Curing Conditions On Strength And Water Resistance Of Natural Gypsum Pastes

Cengiz, Okan 01 September 2009 (has links) (PDF)
ABSTRACT EFFECTS OF POZZOLAN INCORPORATION AND CURING CONDITIONS ON STRENGTH AND WATER RESISTANCE OF NATURAL GYPSUM PASTES Cengiz, Okan Ph.D., Department of Civil Engineering Supervisor : Prof. Dr. Turhan Y. Erdogan September 2009, 189 pages There are large reserves of gypsum rock (CaSO4&middot / 2H2O) in Turkey and in various regions of the world. Heating gypsum rock to 140 - 190 0C causes it to lose three-fourths of its water molecules and turn into gypsum, called plaster of Paris / heat application over 190 0C results in loss of all the water molecules and this form of the material is called gypsum anhydrite. When gypsum is mixed with water, it gains cementitious property and hardens in a short time. Therefore, natural gypsum anhydrite and especially plaster of Paris are widely used in the construction industry. On the other hand, its not being water resistant and having low strength restrict the use of gypsum products for outdoor applications. In this study, the effects of pozzolan incorporation to natural gypsum pastes and application of various curing regimes for improving their water resistance and strength were investigated. Compressive strength and absorption tests on one thousand one hundred twenty two 5-cm cube specimens produced from v 13 different mixture types were conducted. Also the microstructures of these products were investigated using the analytical technique X-Ray Diffraction. The test results showed that water resistance and strength properties of pozzolan-incorporated gypsum products were improved. Curing of the product at elevated temperature regimes was an additional factor that contributed to this improvement. It was concluded that the natural gypsum mixtures prepared and cured at the above-mentioned conditions could also be used for outdoor applications. Keywords: Pozzolan, Natural Gypsum, Elevated Temperature Curing
12

Development Of Pozzolanic Lime Mortars For The Repair Of Historic Masonry

Guney, Bilge Alp 01 February 2012 (has links) (PDF)
The use of lime mortars with pozzolanic additives is of special importance for the repair of historic masonry. In this study, the effect of pozzolanic materials on the final characteristics of mortars was investigated. Metakaolin, fly ash and historic brick powder were used as pozzolanic materials in mortar mixes with varying binder:pozzolan:aggregate ratios. Historic mortar samples from rubble stone masonry of Kahta Castle, a medieval structure in close vicinity of the Nemrut Dag Monument, were also investigated to serve as a starting point for the preparation of repair mortars. Physical and physicomechanical tests, optical microscopy, chemical tests, SEM-EDX and XRD analyses were used to assess the properties of the historic mortars and repair mortars. Fat lime was found to be used in historic mortars with a high binder/aggregate ratio. They were observed to have relatively low density and high porosity with an average compressive strength of 7.4 MPa. Historic mortars were determined to have relatively high water vapour permeability and low water impermeability characteristics. In repair mortars setting was found to be predominantly due to carbonation along with pozzolanic reactions. However, abundant presence of stratlingite in mortars with added metakaolin indicated that the pozzolanic reactions preceded carbonation in those mortars. Use of pozzolanic materials increased the uniaxial compressive strength and modulus of elasticity of mortars compared with control samples. Using the same binder:pozzolan:aggregate ratio, highest increase was observed on mortars prepared with added fly ash at the end of 90 days. Durability parameters of repair mortars defined as wet to dry compressive strength were in the very good to excellent range according to Winkler&rsquo / s classification. By using fly ash, design of lime mortars with high water impermeability and high water vapour permeability characteristics was accomplished.
13

Early Heat Evolution In Natural Pozzolan-incorporated Cement Hydration

Over, Derya 01 August 2012 (has links) (PDF)
Portland cement hydration is an exothermic process. The heat evolved during the hydration process is especially important in mass concrete, and hot and cold weather concreting. Heat of hydration is affected by several factors like chemical composition of cement, fineness of cement and ambient temperature. The major aim of this thesis is to investigate the effect of cement composition and fineness, amount and composition of the fine portion (&lt / 45 &micro / m) of natural pozzolan-incorporated cement on hydration heat. For this purpose, a portland cement and pozzolan-incorporated blended cements containing different amounts of natural pozzolan (trass) were used. The heat of hydration was measured using isothermal calorimetry. The values of heat of hydration for mixtures with different finenesses containing different amounts of added pozzolan were determined. The results obtained were used to find a correlation between the fineness, composition of cement and heat of hydration. According to this study, pozzolan incorporation in small amounts accelerates hydration. A similar effect was obtained for higher pozzolan amounts. Finer cements react faster and result in higher amounts of early heat evolved compared to coarser cements. In addition, it was found that the sum of the heat of hydration values of fine and coarse portion of cements was less than the total heat of hydration of blended cements. Moreover, a satisfactory correlation could not be established between results of isothermal calorimetry, and adiabatic calorimetry, setting time, and strength.
14

Evaluation of natural pozzolans as replacements for Class F fly ash in portland cement concrete

Cano, Rachel Irene 18 March 2014 (has links)
Most concrete produced today utilizes pozzolans or supplementary cementitious materials (SCMs) to promote better long term durability and resistance to deleterious chemical reactions. While other pozzolans and SCMs are available and provide many of the same benefits, Class F fly ash has become the industry standard for producing quality, durable concrete because of its low cost and wide-spread availability. With impending environmental and safety regulations threatening the availability and quality of Class F fly ash, it is becoming increasing important to find viable alternatives. This research aims to find natural, lightly processed, alternatives to fly ash that perform similarly to Class F fly ash with regards to pozzolanic reactivity and provide comparable compressive strength, workability, drying shrinkage, thermal expansion properties and resistance to alkali-silica reaction, sulfate attack, and chloride ion penetration. Eight fly ash alternatives from the US were tested for compatibility with the governing standard for pozzolans used in portland cement concrete and various fresh and hardened mortar and concrete properties. The results of this research indicate that six materials meet the requirements for natural pozzolans set by the American Society for Testing and Materials and many are comparable to Class F fly ash in durability tests. The primary concern when using these materials in concrete is the increase in water demand. The spherical particle shape of fly ash provides improved workability even at relatively low water-to-cement ratios; however, all of the materials tested for this research required grinding to achieve the appropriate particle size, resulting in an angular and rough surface area that requires more lubrication to achieve a workable consistency. So long as an appropriate water reducing admixture is used, six of the eight materials tested in this study are appropriate and beneficial for use in portland cement concrete. / text
15

The productive reuse of coal, biomass and co-fired fly ash

Shearer, Christopher R. 27 August 2014 (has links)
Stricter greenhouse gas emission limits and renewable energy requirements are expected to further increase the worldwide practices of firing biomass and co-firing biomass with coal, which are both considered more sustainable energy sources than coal-only combustion. Reuse options for the by-products of these processes -biomass ash and co-fired fly ash -remain limited. Therefore, this research examines their use as supplementary cementitious materials (SCMs) in concrete and as precursors for alkali-activated geopolymers. Toward their potential use as an SCM, after characterizing these ashes assessing their compliance with ASTM C618 requirements, their impact on early-age hydration kinetics, rheology, setting time and permeability was assessed. Furthermore, the pozzolanic reactivity and the microstructural and hydrated phase development of the cement-ash samples were analyzed. The results show that a wood biomass ash sample was not satisfactory for use as an SCM. On the other hand, the findings demonstrate that co-fired fly ashes can significantly improve the strength and durability properties of concrete compared to ordinary portland cement, in part due to their pozzolanicity. Thus, it is recommended that the ASTM C618 standard be modified to permit co-fired fly ash sources that meet existing requirements and any additional requirements deemed necessary to ensure their satisfactory performance when used in concrete. Toward their potential use in geopolymers, this study characterized the early-age reaction kinetics and rheological behavior of these materials, showing that their exothermic reactivity, plastic viscosity and yield stress are significantly influenced by the activator solution chemistry and other characteristics of the ash. Two co-fired fly ashes were successfully polymerized, with compressive strengths generally highest for ashes activated with solutions with a molar ratio of SiO₂/(Na₂O + K₂O) = 1. The results show that geopolymerization is a viable beneficial reuse for these emerging by-products. Further characterization of these materials by scanning transmission X-ray microscopy analysis revealed the heterogeneity of the aluminosilicate phase composition of the co-fired fly ash geopolymer gel at the nano- to micro-scale.
16

Using Perlite As A Pozzolanic Addition In Blended Cement Production

Meral, Cagla 01 August 2004 (has links) (PDF)
Perlite is a volcanic glass which has high amount of silica and alumina. Those properties make it a candidate, if finely ground, for being used as a pozzolan. The studies on the pozzolanic properties of perlite are very limited, and none of them has dealt with the use of perlite in the blended cement production. The aim of this study is to investigate the pozzolanic properties of perlite, and if appropriate to investigate perlite&rsquo / s usability in blended cement production. For this purpose, perlites from two different sources &ndash / Izmir and Erzincan - are used as replacement of portland cement clinker with two different percentages: 20% and 30% by weight of total cement. Then for each different composition, materials are ground with some gypsum in order obtain grinding curves for the resultant cements. After obtaining the grinding curves, a total of 22 cements with two different finenesses are produced by intergrinding and separately grinding the materials for each composition. The obtained cements are used in paste and mortar production so that normal consistencies, setting times, autoclave expansions, and compressive strengths are determined.
17

Investigation On The Pozzolanic Property Of Perlite For Use In Producing Blended Cements

Erdem, Tahir Kemal 01 March 2005 (has links) (PDF)
Perlite is a glassy volcanic rock that contains approximately 70-75% silica and 12-18% alumina. There are very large perlite reserves in the world (~6700 million tons) and approximately two thirds of these is in Turkey. Due to its high amounts of silica and alumina, at the beginning of such a study, it seemed that it would be worth first to find out whether perlite possesses sufficient pozzolanic property when it is a finely divided form and then to investigate whether it could be used as a pozzolanic addition in producing blended cements. In this study, perlites from two different regions (izmir and Erzincan) were tested for their pozzolanic properties. After obtaining satisfactory results, grindability properties of the clinker, perlites and their different combinations were investigated. Several blended cements with different fineness values and different perlite amounts were produced by either intergrinding or separate grinding methods. The tests performed on the cement pastes and mortars containing the blended cements produced were as follows: Water requirement, normal consistency, setting time, soundness, compressive strength, rapid chloride permeability, resistance to sulfate attack and resistance to alkali-silica reactions. The results showed that Turkish perlites possess sufficient pozzolanic characteristics to be used in cement and concrete industry. Moreover, the properties tested in this study satisfied the requirements stated in the standards for blended cements. The durability of the mortars was found to be improved by 20% or more perlite incorporation.
18

Contribuição para utilização de cinza de casca de arroz na construção civil

Silva, Everton Jose da [UNESP] 13 April 2009 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:25:21Z (GMT). No. of bitstreams: 0 Previous issue date: 2009-04-13Bitstream added on 2014-06-13T19:12:01Z : No. of bitstreams: 1 silva_ej_me_ilha.pdf: 3783689 bytes, checksum: 33016836c826eae75c76a0b521c81b78 (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / A presente pesquisa contribui para a utilização de cinza de casca de arroz (CCA) na construção civil abordando dois aspectos importantes ainda em discussão na literatura. O primeiro aspecto compreende uma análise da influência que a forma de plantio, clima, solo, cultivares e fonte/quantidade de fertilizantes à base de nitrogênio, utilizados na cultura do arroz, exercem na composição química e nas propriedades cristalográficas da CCA. O segundo aspecto foi aplicar em pastas, argamassas e concretos de alto desempenho uma CCA com baixo teor de carbono, de elevado caráter pozolânico, na condição natural (sem moagem), produzida de uma maneira simples e sem controle de temperatura. De acordo com os resultados obtidos neste trabalho, verifica-se a importância de efetuar ensaios rotineiros de análises químicas e de Difração de Raio-X para manter o controle de qualidade das CCAs produzidas, pois em situação de produção de CCA em larga escala, poderiam ser utilizadas cascas de diferentes origens. Neste trabalho, também ficou comprovada a viabilidade técnica e científica do método de produção de CCA utilizado. O método produz CCA que, dependendo da forma de amassamento dos compósitos, pode dispensar o emprego de moinhos para aumentar a finura e/ou reatividade de CCAs. / This research contributes to the use of rice husk ash (RHA) in the civil building covering two important aspects that still under discussion in the literature. The first one includes an analysis of the influence that the form of planting, climate, soil, rice and source/amount of nitrogen-based fertilizers used in rice cultivation in performing crystallographic properties and chemical composition of the rice husk ash. The second one was to aplicate to the pastes, mortar and concrete of high performance a RHA with low carbon, high pozzolanic character, in the natural physical state (without grinding), produced in a simple way and without control of temperature. According to the results obtained in this research, it is important to do routine testing of chemical analysis and X-ray Diffraction to keep quality control of RHAs produced, because at industrial production in large scale it can be used husks of different origins. This research was also demonstrated the feasibility technical and scientific method of production of RHA used. The method produces RHA that depending on the form of production of the composite may eliminate the use of grinders to increase the fineness and/or reactivity of RHAs.
19

Cinza de casca de arroz altamente reativa: método de produção, caracterização físico-química e comportamento em matrizes de cimento Portland

Tashima, Mauro Mitsuuchi [UNESP] 31 October 2006 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:25:22Z (GMT). No. of bitstreams: 0 Previous issue date: 2006-10-31Bitstream added on 2014-06-13T20:53:09Z : No. of bitstreams: 1 tashima_mm_me_ilha_prot.pdf: 3625758 bytes, checksum: 6fad98acc3467ec6096e67472b6e906d (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / Universidade Politecnica de Valencia- Espanha / O presente trabalho apresenta um método de produção de cinza de casca de arroz (CCA) altamente reativa e de coloração clara, bem como o seu comportamento em matrizes de cimento Portland com o intuito de avaliar a atividade pozolânica da CCA. O trabalho está dividido em quatro etapas, a saber: construção de um forno e produção da cinza de casca de arroz, caracterização físico-química da CCA, verificação da atividade pozolânica do material através de métodos instrumentais e, finalmente, ensaios mecânicos em argamassas de cimento Portland. O forno utilizado para a produção da cinza de casca de arroz não apresenta controle de temperatura e, o tempo de queima é bastante longo, aproximadamente 36 horas. Neste método obtém-se cerca de 1,5Kg de cinza por processo de queima. A cinza obtida apresenta uma coloração clara e o seu caráter amorfo foi determinado através de diferentes métodos: difração de Raio-X, determinação do teor de sílica amorfa, análise termogravimétrica, Microscopia Eletrônica de Varredura (MEV) e ensaios mecânicos em argamassas de cimento Portland. O programa experimental também abrange estudos de variação da finura da CCA e estudos com diferentes porcentagens, em substituição ao cimento Portland. Os resultados obtidos foram comparados... / This research show a method of production white amorphous Rice Husk Ash (RHA), therefore, the behaviour of RHA in Portland cement matrix to evaluate the pozzolanic activity of this material. The research can be shared in four steps, to know: construction of an oven and production of rice husk ash, physical-chemical analysis of the rice husk ash, evaluation of pozzolanic activity of the pozzolan though instrumental analysis and, finally, mechanical properties of Portland cement mortars. The oven used for production of rice husk ash didn't have a control of temperature and, the time of burning is so longer, approximately 36 hours. In this method is obtained for about 1,5Kg of ash. The obtained ash has white colour and its amorphous phase were determined though different methods: X-ray diffractometry, determination of amorphous silica, Termogravimetric Analysis (TA), scanning electron microscopy (SEM) and mechanical properties of Portland cement mortars. Besides that, the experimental procedure involves studies on fineness variation of rice husk ash and different degrees of Portland cement substitution. The obtained results were compared with silica fume, because this is the most similar pozzolanic material with rice husk ash. The RHA produced under this method can be used... (Complete abstract click electronic access below)
20

Efeito da substituição do cimento Portland por cinza de casca de arroz e cal nas propriedades de tijolos ecológicos / Effect of replacement of Portland cement by rice husk ash and lime on green bricks properties

Barros, Felipe da Silva [UNESP] 04 August 2016 (has links)
Submitted by Felipe da Silva Barros null (felipesilvabarros@gmail.com) on 2016-09-26T18:09:48Z No. of bitstreams: 1 Dissertação - Felipe da Silva Barros.pdf: 3235310 bytes, checksum: 154831ddcf676d7dbf74ddbd6fe0ce2d (MD5) / Approved for entry into archive by Felipe Augusto Arakaki (arakaki@reitoria.unesp.br) on 2016-09-27T12:38:05Z (GMT) No. of bitstreams: 1 barros_fs_me_guara.pdf: 3235310 bytes, checksum: 154831ddcf676d7dbf74ddbd6fe0ce2d (MD5) / Made available in DSpace on 2016-09-27T12:38:05Z (GMT). No. of bitstreams: 1 barros_fs_me_guara.pdf: 3235310 bytes, checksum: 154831ddcf676d7dbf74ddbd6fe0ce2d (MD5) Previous issue date: 2016-08-04 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Tijolos queimados de argila são muito usados na construção civil, porém consomem altas quantidades de energia durante o processo de queima. Tijolos de solo-cimento são uma alternativa a esses tijolos, pois dispensam a queima, reduzindo o consumo energético em sua produção. Por outro lado, possuem um problema relacionado com a produção de uma de suas matérias primas, o cimento, que envolve a liberação de alta quantidade de CO2 durante seu processo de fabricação, um gás amplamente discutido como um dos responsáveis pelo efeito estufa. Este trabalho teve como objetivo principal desenvolver e caracterizar (por meio de ensaios de flexão em três pontos e de absorção de umidade) amostras de solo-cimento com substituições de cimento em teores de 25%, 50%, 75% e 100% por cinza de casca de arroz e cal. Os resultados mostram que quanto maior o teor de substituição de cimento, maior é a perda de resistência mecânica das amostras. Entretanto, a resistência característica aumenta conforme o avanço das idades para uma mesma composição, sendo que aos 28 dias de idade as amostras com substituições de cimento em 0%, 25%, 50%, 75% e 100% obtiveram valores de resistência característica equivalentes a 10,81 MPa, 10,20 MPa, 8,97 MPa, 7,75MPa e 6,29 MPa respectivamente. Em termos absorção de água, apesar de identificado o aumento de seus valores conforme o aumento da substituição de cimento e também com o avanço da idade das amostras, todos os materiais foram aprovados em comparação com os requisitos da norma NBR 8491. Esta norma exige um máximo de 20% de absorção de água, sendo o maior valor encontrado equivalente a 14,52% para a amostra com 100% de substituição e 28 dias de idade. Esses valores indicam a possibilidade de substituição do cimento por cinza de casca de arroz mais cal, sendo a substituição mais adequada a de 75%. / Burnt clay bricks are widely used in construction industry, but consume high amount of energy during the burning process. Clay-cement bricks are an alternative to these bricks as dispense burning, reducing the energy consumption in its production. However, they have a problem related to the production of one of its raw material, the cement, which involves the release of high amounts of CO2 during its manufacturing process, a gas responsible for the greenhouse effect. This work had as main study point to develop and characterize (by bending tests and water absorption) clay-cement samples with cement replacements in content of 25%, 50%, 75% and 100% by rice husk ash and lime. The results show that the strength reduces while the cement replacement is increased. On the other hand, the strength increases in function of time for the same composition. Therefore, at 28 days of age the samples with cement substitutions of 0%, 25%, 50%, 75% and 100% obtained 10.81 MPa 10.20 MPa, 8.97 MPa, 6.29 MPa and 7,75MPa respectively. In terms of water absorption, the amount of absorbed water was higher for the samples with higher age and lower cement content, but all the samples were approved compared to the requirements of ABNT 8491, which requires a maximum 20% of water absorption, being the highest value equivalent to 14.52% for the sample with 100% of cement substitution and 28 days of age. These values indicate the possibility of cement replacement by rice husk ash and lime, being the most appropriate replacement equivalent of 75%.

Page generated in 0.0561 seconds