Spelling suggestions: "subject:"preconditioning"" "subject:"reconditioning""
121 |
Differential Translocation or Phosphorylation of Alpha B Crystallin Cannot Be Detected in Ischemically Preconditioned Rabbit CardiomyocytesArmstrong, Stephen C., Shivell, Christine L., Ganote, Charles E. 01 January 2000 (has links)
Alpha B Crystallin (αBC) is a putative effector protein of ischemic preconditioning (IPC). that is phosphorylated on Ser 45 by ERK1/2 and Set 59 by the p38 MAPK substrate, MAPKAPK-2. Translocation and phosphorylation of αBC was determined in cytosolic and cytoskeletal fractions by 1D SDS-PAGE and IEF, or using Ser 45 and Set 59 phospho-specific antibodies in: (1) control rabbit cardiomyocytes; (2) cells preconditioned by 10 min in vitro ischemia; or after pre-treatment with specific inhibitors of (3) Ser/Thr protein phosphatase 1/2A (calyculin A); (4) p38 MAPK (SB203580); or (5) ERK 1/2 (PD98059); all prior to 180 min ischemia. Ischemia induced a cytosolic to cytoskeletal translocation of αBC, which was similar in all the groups. Highly phosphorylated isoforms (D1/2) of αBC were present in cytosolic but not cytoskeletal fractions at 0 min ischemia. By 60-90 min ischemia. D1/2 isoforms had translocated to the cytoskeletal fraction. Calyculin A maintained D1/2 levels throughout prolonged ischemia. SB203580 decreased αBC phosphorylation. Neither PD98059 nor IPC altered αBC phosphorylation during prolonged ischemia. It is concluded that αBC phosphorylation during ischemia is regulated by p38 MAPK but not by ERK 1/2. The inability to detect a correlation between IPC protection and either αBC translocation or phosphorylation suggests that the proteins in the highly phosphorylated isoform bands of αBC quantitated in this study are not protective end effectors of classical IPC.
|
122 |
The Cardioprotection Induced by Lipopolysaccharide Involves phos-phoinositide 3-kinase/Akt and High Mobility Group Box 1 PathwaysLiu, Xiang, Chen, Yijiang, Wu, Yanhu, Ha, Tuanzhu, Li, Chuanfu 01 July 2010 (has links)
Objective: The mechanisms by which lipopolysaccharide (LPS) pretreatment induces cardioprotection following ischaemia/reperfusion (I/R) have not been fully elucidated. We hypothesized that activation of phosphoinositide 3-kinase (PI3K)/Akt and high mobility group box 1 (HMGBx1) signaling plays an important role in LPS-induced cardioprotection. Methods: In in vivo experiments, age- and weight-matched male C57BL/10Sc wild type mice were pretreated with LPS before ligation of the left anterior descending coronary followed by reperfusion. Infarction size was examined by triphenyltetrazolium chloride (TTC) staining. Akt, phospho-Akt, and HMGBx1 were assessed by immunoblotting with appropriate primary antibodies. In situ cardiac myocyte apoptosis was examined by the TdT-mediated dUTP nick-end labeling (TUNEL) assay. In an in vitro study, rat cardiac myoblasts (H9c2) were subdivided into two groups, and only one was pretreated with LPS. After pretreatment, the cells were transferred into a hypoxic chamber under 0.5% O2. Levels of HMGBx1 were assessed by immunoblot. Results: In the in vivo experiment, pretreatment with LPS reduced the at risk infarct size by 70.6% and the left ventricle infarct size by 64.93% respectively. Pretreatment with LPS also reduced cardiac myocytes apoptosis by 39.1% after ischemia and reperfusion. The mechanisms of LPS induced cardioprotection involved increasing PI3K/Akt activity and decreasing expression of HMGBx1. In the in vitro study, pretreatment with LPS reduced the level of HMGBx1 in H9c2 cell cytoplasm following hypoxia. Conclusion: The results suggest that the cardioprotection following I/R induced by LPS pretreatment involves PI3K/Akt and HMGBx1 pathways.
|
123 |
Sarcolemmal Blebs and Osmotic Fragility as Correlates of Irreversible Ischemic Injury in Preconditioned Isolated Rabbit CardiomyocytesArmstrong, Stephen C., Shivell, Christine L., Ganote, Charles E. 01 January 2001 (has links)
The hypothesis that irreversible ischemic injury is related to sub-sarcolemmal blebbing and an inherent osmotic fragility of the blebs was tested by subjecting isolated control and ischemically preconditioned (IPC) or calyculin A (CalA)-pretreated (protected) rabbit cardiomyocytes to ischemic pelleting followed by resuspension in 340, 170 or 85 mosmol medium containing trypan blue. At time points from 0-240 min, osmotic fragility was assessed by the percentage of trypan blue permeable cells. Membrane blebs were visualized with India ink preparations. Bleb formation, following acute hypo-osmotic swelling, developed by 75 min and increased with longer periods of ischemia. Osmotic fragility developed only after 75 min. Cells resuspended in 340 mosmol media did not form blebs and largely retained the ability to exclude trypan blue, even after 240 min ischemia. Although the latent tendency for osmotic blebbing preceded the development of osmotic fragility, most osmotically fragile cells became permeable without evident sarcolemmal bleb formation. The onset of osmotic fragility was delayed in protected cells, but protection did not reduce the bleb formation. It is concluded that blebbing and osmotic fragility are independent manifestations of ischemic injury. The principal locus of irreversible ischemic injury and the protection provided by IPC may lie within the sarcolemma rather than at sarcolemmal attachments to underlying adherens junctions.
|
124 |
Extensions of High-order Flux Correction Methods to Flows With Source Terms at Low SpeedsThorne, Jonathan L. 01 May 2015 (has links)
A novel high-order finite volume scheme using flux correction methods in conjunction with structured finite difference schemes is extended to low Mach and incompressible flows on strand grids. Flux correction achieves high-order by explicitly canceling low-order truncation error terms in the finite volume cell. The flux correction method is applied in unstructured layers of the strand grid. The layers are then coupled together using a source term containing the derivatives in the strand direction. Proper source term discretization is verified. Strand-direction derivatives are obtained by using summation-by-parts operators for the first and second derivatives. A preconditioner is used to extend the method to low Mach and incompressible flows. We further extend the method to turbulent flows with the Spalart Allmaras model. We verify high-order accuracy via the method of manufactured solutions, method of exact solutions, and physical problems. Results obtained compare well to analytical solutions, numerical studies, and experimental data. It is foreseen that future application in the Naval field will be possible.
|
125 |
Physically Based Preconditioning Techniques Applied to the First Order Particle Transport and to Fluid Transport in Porous MediaRigley, Michael 01 May 2014 (has links)
Physically based preconditioning is applied to linear systems resulting from solving the first order formulation of the particle transport equation and from solving the homogenized form of the simple flow equation for porous media flows. The first order formulation of the particle transport equation is solved two ways. The first uses a least squares finite element method resulting in a symmetric positive definite linear system which is solved by a preconditioned conjugate gradient method. The second uses a discontinuous finite element method resulting in a non-symmetric linear system which is solved by a preconditioned biconjugate gradient stabilized method. The flow equation is solved using a mixed finite element method. Specifically four levels of improvement are applied: homogenization of the porous media domain, a projection method for the mixed finite element method which simplifies the linear system, physically based preconditioning, and implementation of the linear solver in parallel on graphic processing units. The conjugate gradient linear solver for the least squares finite element method is also applied in parallel on graphics processing units. The physically based preconditioner is shown to perform well in each case, in relation to speed-ups gained and as compared with several algebraic preconditioners.
|
126 |
Molecular Roles of ROS in Mouse Respiratory Skeletal MuscleZHOU, TINGYANG, ZHOU 03 December 2018 (has links)
No description available.
|
127 |
In Vitro Ischaemic Preconditioning of Isolated Rabbit Cardiomyocytes: Effects of Selective Adenosine Receptor Blockade and Calphostin CArmstrong, S., Ganote, C. E. 01 January 1995 (has links)
Objective: The aim was to determine if in vitro ischaemic preincubation can precondition cardiomyocytes and if the responses to adenosine receptor antagonists are similar to those previously determined during 'metabolic' preconditioning with glucose deprivation or adenosine agonists. Methods: Isolated rabbit cardiomyocytes were preconditioned with 10 min of ischaemic preincubation, followed by a 30 min postincubation before the final sustained ischaemic period. The protein kinase C inhibitor calphostin C or the adenosine receptor antagonists 8-sulphophenyltheophylline (SPT), BW 1433U, and 1,3-dipropyl-8-cyclopentylxanthine (DPCPX) were added either during the preincubation or into the final ischaemic pellet. Adenosine deaminase (10 U·ml-1) was added during ischaemic preincubation. Rates of contracture and extent of injury were determined by sequential sampling and assessment of trypan blue permeability following 85 mOsM swelling. Results: Myocytes were preconditioned by a 10 min in vitro ischaemic preincubation. Preincubation with 100 μM SPT or with adenosine deaminase, or addition of 200 nM calphostin C into the final ischaemic pellet did not alter rates of rigor contracture but nearly abolished protection. A significant degree of protection was maintained following ischaemic preincubation with the highly selective adenosine A1 receptor blocker DPCPX (10 μM), while the A1/A3 antagonist BW 1433U (1 μM) severely limited protection. SPT and BW 1433U added only into the final ischaemic pellet of preconditioned cells significantly blocked protection, while protection was maintained in the presence of DPCPX. Conclusions: Ischaemic preconditioning of cardiomyocytes is blocked by adenosine receptor antagonists known to bind to A3 receptors but not by DPCPX which has high affinity for A1 receptors, but little affinity for A3 receptors. Maintenance of protection during the final ischaemic phase has a similar receptor specificity. Blockade of protein kinase C activity abolishes protection. Ischaemic and metabolic preconditioning in vitro appear to occur through similar pathways.
|
128 |
In Vitro Ischaemic Preconditioning of Isolated Rabbit Cardiomyocytes: Effects of Selective Adenosine Receptor Blockade and Calphostin CArmstrong, Stephen, Ganote, Charles E. 01 September 1994 (has links)
Objective: The aim was to determine if in vitro ischaemic preincubation can precondition cardiomyocytes and if the responses to adenosine receptor antagonists are similar to those previously determined during "metabolic" preconditioning with glucose deprivation or adenosine agonists. Methods: Isolated rabbit cardiomyocytes were preconditioned with 10 min of ischaemic preincubation, followed by a 30 min postincubation before the final sustained ischaemic period. The protein kinase C inhibitor calphostin C or the adenosine receptor antagonists 8-sulphophenyltheophylline (SPT), BW 1433U, and 1,3-dipropyl-8-cyclopentylxanthine (DPCPX) were added either during the preincubation or into the final ischaemic pellet. Adenosine deaminase (10 U · ml-1) was added during ischaemic preincubation. Rates of contracture and extent of injury were determined by sequential sampling and assessment of trypan blue permeability following 85 mOsM swelling. Results: Myocytes were preconditioned by a 10 min in vitro ischaemic preincubation. Preincubation with 100 μM SPT or with adenosine deaminase, or addition of 200 nM calphostin C into the final ischaemic pellet did not alter rates of rigor contracture but nearly abolished protection. A significant degree of protection was maintained following ischaemic preincubation with the highly selective adenosine A1 receptor blocker DPCPX (10 μM), while the antagonist BW 1433U (1 μM) severely limited protection. SPT and BW 1433U added only into the final ischaemic pellet of preconditioned cells significantly blocked protection, while protection was maintained in the presence of DPCPX. Conclusions: Ischaemic preconditioning of cardiomyocytes is blocked by adenosine receptor antagonists known to bind to A3 receptors but not by DPCPX which has high affinity for A1 receptors, but little affinity for A3 receptors. Maintenance of protection during the final ischaemic phase has a similar receptor specificity. Blockade of protein kinase C activity abolishes protection. Ischaemic and metabolic preconditioning in vitro appear to occur through similar pathways.
|
129 |
Adenosine Receptor Specificity in Preconditioning of Isolated Rabbit Cardiomyocytes: Evidence of a<sub>3</sub> Receptor InvolvementArmstrong, Stephen, Ganote, Charles E. 01 January 1994 (has links)
Objective: The aim was to further characterise an experimental model of preconditioning of isolated rabbit cardiomyocytes and to determine the role of adenosine receptor subtypes in initiation of the protective response. Methods: Isolated myocytes were subjected to 5 min preincubation in the presence or absence of glucose and various agonists and antagonists of adenosine receptors. Ischaemic pelleting was preceded by a 30 min postincubation period. Rate and extent of injury during ischaemia was determined by sequential sampling of the pelleted cells and assessment of trypan blue permeability following 85 mOsm swelling. Results: Myocytes were preconditioned with a 30-50% reduction of injury by a 5 min glucose-free preincubation. Substitution of 5 mM pyruvate for glucose during preincubation did not prevent the protective response. Protection was maintained over a 60-180 min postincubation period. Protection was blocked by 100 μM of the non-specific adenosine A1A2, antagonist SPT, both when added only during preincubation or only into the ischaemic pellet. Calphostin C, a specific protein kinase C inhibitor at 200 nM, added to the ischaemic pellet blocked protection. Preincubation with R-PIA, the adenosine A1 agonist, did not precondition at an A1 selective dose of 1 μM, but did at 100 μM. The selective A2 agonist CGS 12680 (1 μM) did not precondition. The selective A1/A3 adenosine agonist, APNEA, preconditioned at 1 μM and 200 nM dose levels. Preconditioning induced either by 200 nM APNEA or by glucose-free preincubation was not blocked by 200 nM or 10 μM of the A1 antagonist DPCPX, which has extremely low affinity for A3 receptors, but was blocked by 1 μM of the A1/A3 adenosine antagonist BW 1433U83. Conclusions: Preconditioning can be induced in isolated myocytes by a 5 min preincubation/30 min postincubation protocol, and a similar protection induced by adenosine agonists with A3, but not A1 selectivity. Preconditioning is blocked by non-selective or selective A1/A3 adenosine antagonists and a specific protein kinase C inhibitor, but not by A1 antagonists with little affinity for A3 receptors. The results suggest that preconditioning in isolated rabbit myocytes requires participation of adenosine receptors with agonist/antagonist binding characteristics of the A3 subtype, and is likely to be mediated by activation of protein kinase C.Cardiovascular Research 1994;28:1049-1056.
|
130 |
Preconditioning of Isolated Rabbit Cardiomyocytes: Effects of Glycolytic Blockade, Phorbol Esters, and IschaemiaArmstrong, Stephen, Ganote, Charles E. 01 January 1994 (has links)
Objective: The aim was to discriminate among several hypotheses of preconditioning of isolated rabbit cardiomyocytes and to determine if ischaemic preincubation would evoke a protective response. Methods: Isolated myocytes were subjected to 5 min of preincubation, in the presence or absence of glucose, and incubated in the presence of 1 mM iodoacetic acid during the final sustained ischaemic period. In a second series, the protein kinase C (PKC) activators phorbol 12-myristate 13-acetate (PMA), ingenol 3, 20-dibenzoate, and thymeleatoxin were added during preincubation. In a third series, preincubation periods were substituted by brief ischaemic pelleting of cells. Final prolonged ischaemic pelleting was preceded by a 30 min postincubation period. Rate and extent of injury was determined by sequential sampling and assessment of trypan blue permeability following 85 mOsM swelling. Results: Myocytes were preconditioned by a 5 min glucose-free preincubation. Addition of iodoacetic acid into the final ischaemic pellet increased the rates of rigor contracture and injury, but did not abolish the protective response. Direct protein kinase C activation with PMA, a non-selective phorbol ester, and ingenol, an ε, δ-PKC isozyme selective activator, protected cells, but thymeleatoxin, an α,β,γ-PKC isozyme selective activator, did not. A 10 min ischaemic preincubation preconditioned, but the protection was not enhanced when ischaemia was extended to 30 min, or when PMA was included during the initial ischaemic preincubation. Adenosine partially inhibited the response. Conclusions: (1) Preconditioning of isolated myocytes is not dependent on glycolysis or glucose transport. (2) Preconditioning appears dependent on activation of the ε-PKC isoformn. (3) Ischaemia is capable of preconditioning isolated myocytes in vitro, and initiation of this effect is modified by simultaneous additional of adenosine but not by direct protein kinase C activation with PMA. Induction of protection by PMA and ingenol shows that protection requires protein kinase C activation, but direct potassium channel activation by regulatory G proteins is not critical.Cardiovascular Research 1994;28:1700-1706.
|
Page generated in 0.1004 seconds