Spelling suggestions: "subject:"predator grey"" "subject:"predator prey""
51 |
Predation på evertebrater under tidig vår i sjön TåkernMolin, Johan January 2012 (has links)
Benthic invertebrates play important roles as feeding resources for many organisms in different food webs. Shifts in predation of these organisms can generate cascading effects and potentially lead to the disappearance of one or more species from a site. Cascading effects can bring impacts to organisms who aren’t even directly involved, why studies in this field are important for understanding sudden changes in ecosystems. I examined the predation from fish and waterfowl on benthic invertebrates in the shallow and eutrophic Lake Tåkern in the plains of Östergötland County, southern Sweden. The study was experimental and used exclosures (three types, eight replicates) in the shape of 130-liter cages to examine the composition of invertebrates. It was conducted during early spring, a relatively unexamined period for this kind of study. I found no significant differences in the control treatment compared to any of the other treatments regarding biodiversity. The invertebrate fauna was dominated by a small number of species, with a relatively patchy spread throughout the sediment area. Furthermore, the results indicate that the fish hadn’t had the time to properly activate their predatory habits due to prolonged winter temperatures. The waterfowl were considered too absent during the test period to affect the invertebrate community. Future studies in this area are recommended to work with a greater sampling area, to reduce the influence of extreme values.
|
52 |
The reciprocal relationship between hydrodynamics and bivalvesDelavan, Sarah Kelly 18 May 2010 (has links)
The focus of this study was to determine the effect of clam presence and behavior on the crossflow of the ambient horizontal flow and the effect of ambient horizontal flow characteristics influence the clam feeding behavior. Hence, there is a reciprocal relationship between organisms and the physical environment, and this study ultimately addressed the role of hydrodynamics in the predator-prey relationship between bivalve clams, Mercenaria mercenaria, and their predators, blue crabs and whelks. The study concludes that clams alter the chemical odorant source characteristics and control the transmission of the chemical signal through altering the crossflow.
The first part of the study is a field experiment designed to quantify the effect of the presence and behavior of clams on the crossflow of the horizontal crossflow. The second part of this study is a two-part laboratory experiment designed to isolate the influence of environmental factors on clam behavior. One experiment quantifies the unsteadiness of the clam excurrent jet velocity time record according to environmental cues such as the horizontal crossflow velocity, the density of the clam patch, and the size of the clam. The second laboratory experiment quantifies the unsteadiness of the jet velocity values according to the presence of predator cues in the upstream flow.
Clams are found, using an ADV system in the field, to alter the vertical distribution of velocity according to the sediment in which they are buried. Also, turbulence characteristics, such as Turbulent Kinetic Energy and Reynolds shear stress, are altered in the presence of clams according to the ambient horizontal crossflow velocity and treatment site.
The laboratory flume PIV system captured vector plots for two-dimensional planes that bisect the clam excurrent siphons and clam jet velocity time records were extracted. A fractal analysis and a lacunarity analysis of the jet velocity time records found that clams alter their jet excurrent velocity unsteadiness according to the horizontal crossflow velocity. This behavioral change may contribute to the differences in the turbulence characteristics in the field experiment. Another result from the laboratory experiments is that the effect of clam patch density on the feeding activity was dependent on the size of the organism. This size/density dependent relationship suggests that predation by blue crabs dominates the system since larger clams are no longer susceptible to blue crab predation, whereas clams of all sizes are susceptible to whelk predation. Finally, clams increase the randomness of their excurrent jet velocity values when predator cues are located in the upstream flume flow. This suggests that the presence of predators elicits clam behavior that promotes the mixing and dilution of their chemical metabolites.
|
53 |
Climate- and habitat-mediation of predator-prey interactions in an invasion contextHunt, Sophia Katherine January 2015 (has links)
Ecosystems across the globe are facing a range of anthropogenically-driven changes, including biotic invasions, urbanisation and land-use alterations, which can affect ecosystem structure and stability. To manage both native species decline and invasive species spread it is imperative that we can accurately predict how current global environmental change will affect biotic communities.
I examined effects of different land uses at both landscape- and habitat-scales on native (Culex pervigilans) and exotic (Aedes notoscriptus) mosquito distributions in lentic (standing water) freshwater habitats. Because of the importance of land use on habitat characteristics, I expected different land uses would contain different biotic communities, and that mosquitoes would more likely be present in simple communities with fewer predators. Moreover, because habitat disturbance and modification can significantly influence community structure, I expected less diverse pond communities in habitats within highly modified urban and pasture land uses would also be more likely to contain mosquitoes. I found land use affects mosquito presence, and was likely strongly linked with land-use effects on predator presence and taxon richness. Predators were more common in habitats within native forest and tussock grassland, and mosquitoes were almost entirely restricted to urban and pasture habitats. Moreover, local habitat characteristics had a strong influence on both mosquito and predator presence, with deeper and more open habitats supporting greater predator abundance, thereby excluding mosquito larvae.
To further investigate the global of climate change on predator-prey interactions involving Ae. notoscriptus and Cx. pervigilans, I conducted two experiments. Firstly, I measured effects of habitat warming and short- and long-term habitat drying on interactions between the two mosquito species and three predatory invertebrates, Anisops wakefieldi backswimmers, Austrolestes colensonis damselflies, and Procordulia smithii dragonflies, which represented predators characteristic of different habitat drying regimes. A second experiment further tested interactions between A. wakefieldi and the two mosquito species in a wider range of temperatures. There was little evidence that short-term habitat drying affected interaction strengths of any of the predator-prey combinations, but strong evidence for the importance of temperature-mediated predation rates which depended on both predator and prey identities. Here, predators characteristic of more temporary hydroperiods showed temperature-mediated predation responses on the two mosquito species: increasing temperature resulted in greater predation on native Cx. pervigilans but not effect on predation on exotic Ae. notoscriptus. The second experiment revealed, again, that predation depended on both temperature and mosquito species with higher predation occurring at increased temperature, but also indicated life history traits could mediate the overall effect of temperature-mediated predation.
Overall, I have shown that interactions between temperature, predator identity and mosquito species will be very important in determining the potential for mosquitoes to invade under a changing climate. Considering effects of both climate change and land-use-driven habitat modification on the invasion potential of mosquitoes in freshwater communities will therefore be important for managing both native species decline and spread of invaders. Moreover, research and management decisions on critical species like mosquitoes will need to encompass multiple drivers of climate change at both global and local scales.
|
54 |
THE EFFECTS OF THERMAL HABITAT AND MACROINVERTEBRATE PREDATION ON THE CRUSTACEAN ZOOPLANKTON COMMUNITY OF A SMALL BOREAL SHIELD LAKEMACPHEE, SHANNON 31 March 2009 (has links)
Climate change will affect all freshwater ecosystems via both direct physiological and indirect, biologically-mediated effects. Small lakes (< 10 ha) numerically dominate the Boreal Shield and represent an important habitat for aquatic biota. Small, shallow lakes are particularly responsive to climate-induced changes in thermal structure. Furthermore, biological interactions may be particularly important in small lakes where space, habitat heterogeneity, and thermal refugia are limited. Therefore, it is critical to understand and predict the consequences of climate change for community dynamics in small Boreal Shield lakes.
Using 10 years of monitoring data and a field experiment I tested for differences in crustacean zooplankton community structure between warm and cool lake habitats. I classified years from a small, shallow Boreal Shield lake as ‘warm’ or ‘cool’ based on several characteristics of lake thermal structure. Since macroinvertebrates are often the main predators in small, shallow lakes, I further tested for potential interactions between lake thermal structure and spatially-dependent macroinvertebrate predation using in situ mesocosms.
Body sizes of two ubiquitous crustacean zooplankton taxa, Leptodiaptomus minutus and Bosmina spp., were reduced in warm years, but no differences in abundance or diversity were detected at the annual scale. In contrast, in 15d enclosure experiments, crustacean zooplankton abundance and calanoid copepodid body size were reduced by the vertically-migrating predator Chaoborus punctipennis, but only in warm isothermal conditions. Zooplankton lowered their daytime depth distribution to avoid the surface-orienting notonectid predator, Buenoa macrotibialis, regardless of thermal habitat. No predation effect was detected in a hot (25ºC) isothermal habitat where both Chaoborus and notonectids were likely heat-stressed.
Differences in abundance effects between the enclosure and monitoring data are likely due to the scales at which the analyses were conducted. Over short timescales predator-prey dynamics depended on lake thermal structure. However, over annual timescales zooplankton response was averaged across periods of seasonal change in thermal structure and biological processes, which may dampen the short-term effects associated with strong predation in isothermal conditions. Therefore, the importance of macroinvertebrate predators in regulating crustacean zooplankton community structure may increase if small lakes become progressively more isothermal with future climate change. / Thesis (Master, Biology) -- Queen's University, 2009-03-31 13:29:35.975
|
55 |
Population-level responses of fathead minnow (Pimephales promelas) to alarm substances and predator odourJung, Jennifer Unknown Date
No description available.
|
56 |
Biotic interactions in a changing world: the role of feeding interactions in the response of multitrophic communities to rising temperature and nitrogen depositionDe Sassi, Claudio January 2012 (has links)
Global warming and increasing atmospheric nitrogen deposition are ranked as second and third most important global drivers of biodiversity loss. Widespread species losses have deep implications for the functioning of ecosystems, the delivery of essential ecosystem services and their resilience to future environmental perturbations.
There is growing recognition that interactions between species play a crucial role in determining the response of ecosystems to global environmental changes. Moreover, evidence of synergistic effects between global change drivers has prompted numerous calls to integrate multiple drivers in ecological research. Nevertheless, empirical studies assessing the impacts of temperature and nitrogen on communities at multiple trophic levels are largely absent. This thesis explores the effects of temperature and nitrogen on a tri-trophic system comprising plants, herbivores and natural enemies. The first chapter shows impacts of the drivers on the composition and phenology of an herbivore community. The second chapter highlights changes in biomass under the treatments at three trophic levels. The third chapter explores, for the first time, the impacts of temperature and nitrogen on quantitative food webs. Finally, the last data chapter uses body size as an important species trait to gain insights on the mechanisms causing shifts in food web structure.
The key findings of this thesis were i) trophic interactions largely mediated the effects of both global change drivers ii) In particular, strong bottom-up effects determined the system response, with herbivores responding positively and consistently more so than plants and parasitoids in particular. However, iii) this contrasting response was not explained by a phenological mismatch. iv) Food-web structure responded to the changes in composition of herbivores and parasitoids, but shifts in interaction structure did not affect the resilience of the food. However, temperature and nitrogen impacted host-parasitoid food-web structure by altering the response of parasitoid species to host density and size structuring, which is likely to bear consequences on host-parasitoid co-evolution and future food-web architecture and stability. Finally, v) we found frequent, non-additive interactions between the global change drivers. We conclude that co-occurring temperature and nitrogen are likely to alter food-web structure and overall ecosystem balance, with increasing herbivore dominance likely to have important implications for ecosystem functioning and food-web persistence.
|
57 |
The Spatial Ecology of Predator-prey Relationships in Lakes / L'écologie Spatiale des Relations Prédateur-Proie dans les Lacsde Kerckhove, Derrick Tupper 18 July 2014 (has links)
The pelagic zone of lakes is defined as the water column over the area of the lake benthos that does not receive enough light from the sun to allow macrophytes to grow. The four chapters of this thesis explore the spatial ecology of predator-prey interactions between schooling fish and their fish predators in this featureless environment. We first developed novel hydroacoustics methods to study fish and fish school swimming behaviour in the pelagic zone (Chapter 1 and 2). Then we characterized our in-situ school formation and prey movement observations using an ideal gas model to better understand the mechanisms that lead to fish and school densities during the daytime (Chapter 2 and 3). With this model we estimated the functional relationship between the schooling prey densities and predator encounter rates, and verified with empirical data a counterintuitive relationship that encounter rates decreased as overall prey densities increased (Chapter 3). The encounter rates suggested that predation within the pelagic zone might be greatly influenced by external forces if they provide spatial structure which encourages greater degrees of prey aggregation in predictable locations. In this regard we examined the predator-prey dynamics under wind and found large redistributions of prey and predators under windy conditions leading to greater aggregations in downwind locations. Further, we found that our study fish were larger in lakes that were oriented into the wind, perhaps demonstrating a benefit to fish growth under windy conditions (Chapter 4).
|
58 |
Numerical modelling of some systems in the biomedical sciencesAl-Showaikh, Faisal Nasser Mohammed January 1998 (has links)
Finite-difference numerical methods are developed for the solution of some systems in the biomedical sciences; namely, a predator-prey model and the SEIR (Susceptible/Exposed/ Infectious/Recovered) measles model. First-order methods are developed to solve the predator-prey model and one second-order method is developed to solve the SEIR measles model. The predator-prey model is extended to one-space dimension to incorporate diffusion. The SEIR measles model is extended to one-space dimension to incorporate (i) diffusion, (ii) convection and (iii) diffusion-convection. The SEIR measles model is extended further to model diffusion in two-space dimensions. The reaction terms in these systems of partial differntial equations contain nonlinear expressions. Nevetheless, it is seen that the numerical solutions are obtained by solving a linear algebraic system at each time step, as opposed to solving a nonlinear algebraic systems, which is often required when integrating non-linear partial differential equations. The development of each numerical method is made in the light of experience gained in solving the system of ordinary differential equations for each system. The numerical methods proposed for the solution of the initial-value problem for the predator-prey and measles models are characterized to be implicit. However, in each case it is seen that the numerical solutions are obtained explicitly. In a series of numerical experiments, in which the ordinary differential equations are solved first of all, it is seen that the proposed methods have superior stability properties to those of the well-known, first-order, Euler method to which they are compared. Incorporating the proposed methods into the numerical solution of partial differential equations is seen to lead to economical and reliable methods for solving the systems.
|
59 |
Population-level responses of fathead minnow (Pimephales promelas) to alarm substances and predator odourJung, Jennifer 06 1900 (has links)
Alarm substances, released by injured prey, and odours from predators, such as northern pike, are chemical cues associated with increased predation risk in aquatic ecosystems. In laboratory studies, individual prey can respond to the presence of such cues by reducing conspicuous behaviours, such as foraging and by seeking shelter. These responses may reduce growth and reproduction, which could have effects at the population-level. The objective of my study was to determine if alarm substances or pike odour have population-level effects on fathead minnow. In the cattle trough experiment, alarm substances and pike odour had no effect on breeding behaviour and recruitment of young; however, spawning occurred earlier with exposure to alarm substances relative to water controls. In a larger-scale pond experiment, alarm substances had no effect on reproduction or recruitment. Despite individual-level effects in the laboratory, exposure to alarm substances and pike odour had no impact at the population scale. / Ecology
|
60 |
Demographic and life history consequences of harvest in a Swedish moose population /Ericsson, Göran, January 1900 (has links) (PDF)
Diss. (sammanfattning) Umeå : Sveriges lantbruksuniv. / Härtill 6 uppsatser.
|
Page generated in 0.0466 seconds