• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 29
  • 4
  • 3
  • 2
  • 1
  • Tagged with
  • 46
  • 46
  • 22
  • 19
  • 11
  • 10
  • 10
  • 10
  • 9
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Spatial association between the locations of roots and water flow paths in highly structured soil

Gardiner, Nathan Thomas 17 February 2005 (has links)
Considerable evidence exists that the majority of low tension water flow through highly structured clayey soil occurs in a small fraction of total pore space and that the flow paths converge as depth increases. In structured clayey soils, water tends to flow in locations where macroporosity is high and roots tend to enjoy this condition as well. Water reduces the strength and mechanical impedance of the soil. Mechanical impedance of clayey soils tends to be extremely high when the soils are dry so one might expect that there would be a positive spatial correlation between the location of roots and the location of water flow paths in highly structured clayey soils. Understanding the relationship between the location of roots in soil relative to the location of water flow paths is important in understanding how plants obtain nutrients and water for growth, and it would also be of considerable importance in phytoremediation research and research into the prevention of groundwater contamination. This experiment was designed to map the locations of flow paths and roots and then measure the spatial association of the two. A pasture on Ship’s clay along the Brazos River was chosen as the research site. Three plots were irrigated with an Erioglaucine dye solution used to stain flow paths. After irrigation the soil was excavated to a depth of 25 cm. On the resulting horizontal plane the dye stain pattern was mapped using photography. The locations of roots were mapped on clear plastic sheets. During mapping the roots were categorized by size. The mapping procedure was repeated at depth of 45 cm and 75 cm for all plots. The root maps were overlaid on the photographic images and analyzed for a spatial association. There was no evidence the smallest (> 1 mm diameter) roots were not randomly distributed. The results did show that the larger roots were not randomly distributed, and evidence pointed to a clustering of roots in and around the dye stained flow paths. However, the data fell short of establishing a spatial association. The lack of more conclusive data was likely the result of inaccuracies in the mapping.
2

Evaluation of Preferential Flow Processes in Reclamation Soil Covers

Welter, Danielle Celine 10 August 2009
To predict the effectiveness of land reclamation, it is important to understand how water and solutes are transported within reconstructed landscapes. The objective of this study was to examine the influence of preferential flow on salt leaching in reclamation soil covers. The study site was a reconstructed landscape where saline-sodic minespoil from oil sands mining was capped with layers of glacial and peat mix soil. Preferential flow was investigated using laboratory column experiments and in situ adsorptive dye and conservative tracer experiments.<p> Results from column experiments and dye tracer experiments indicate that preferential flow is an important and prevalent mechanism of solute transport. Column experiments, which used time-domain reflectometry to monitor the transport of a chloride tracer through an undisturbed core of peat mix soil, determined immobile water fractions (èim/è) ranging from 80-99% and diffusive mass transfer rates (á) between 0.15 - 2.0 h-1. Breakthrough curves showed the early arrival of chloride and extended tailing. Dye tracer experiments, in which Brilliant Blue dye was applied in solution to the soil surface, were carried out at 6 hillslopes plots. Approximately 24 hours after dye application, a vertical soil face was excavated to reveal stained flow patterns. Preferential flow as macropore flow, fingering, and / or funneling was observed at each plot.<p> Results from the conservative tracer field study indicated soil solutes were flushed by a combination of vertical and lateral flow processes. A large pulse of bromide and chloride was applied across the lower slope of the 0.35-m cover. Soil sampling at approximately 1 and 2 years later determined vertical leaching, lateral translocation downslope, and upwards movement of soil solutes. Matrix flow during the spring melt, combined with matrix flow and / or preferential flow during summer and fall periods, was responsible for the vertical leaching of solutes. Subsurface flow generated in response to the spring melt or due to differences in soil hydraulic conductivity was responsible for the lateral transport of solutes. As a result of advective or diffusive processes, solutes were transported upwards into the overlying soil. These results suggested that despite the existence of preferential flow, there were other mechanisms of solute transport which served to leach and flush salts from the soil.
3

Evaluation of Preferential Flow Processes in Reclamation Soil Covers

Welter, Danielle Celine 10 August 2009 (has links)
To predict the effectiveness of land reclamation, it is important to understand how water and solutes are transported within reconstructed landscapes. The objective of this study was to examine the influence of preferential flow on salt leaching in reclamation soil covers. The study site was a reconstructed landscape where saline-sodic minespoil from oil sands mining was capped with layers of glacial and peat mix soil. Preferential flow was investigated using laboratory column experiments and in situ adsorptive dye and conservative tracer experiments.<p> Results from column experiments and dye tracer experiments indicate that preferential flow is an important and prevalent mechanism of solute transport. Column experiments, which used time-domain reflectometry to monitor the transport of a chloride tracer through an undisturbed core of peat mix soil, determined immobile water fractions (èim/è) ranging from 80-99% and diffusive mass transfer rates (á) between 0.15 - 2.0 h-1. Breakthrough curves showed the early arrival of chloride and extended tailing. Dye tracer experiments, in which Brilliant Blue dye was applied in solution to the soil surface, were carried out at 6 hillslopes plots. Approximately 24 hours after dye application, a vertical soil face was excavated to reveal stained flow patterns. Preferential flow as macropore flow, fingering, and / or funneling was observed at each plot.<p> Results from the conservative tracer field study indicated soil solutes were flushed by a combination of vertical and lateral flow processes. A large pulse of bromide and chloride was applied across the lower slope of the 0.35-m cover. Soil sampling at approximately 1 and 2 years later determined vertical leaching, lateral translocation downslope, and upwards movement of soil solutes. Matrix flow during the spring melt, combined with matrix flow and / or preferential flow during summer and fall periods, was responsible for the vertical leaching of solutes. Subsurface flow generated in response to the spring melt or due to differences in soil hydraulic conductivity was responsible for the lateral transport of solutes. As a result of advective or diffusive processes, solutes were transported upwards into the overlying soil. These results suggested that despite the existence of preferential flow, there were other mechanisms of solute transport which served to leach and flush salts from the soil.
4

Predictability of hydrologic response at the plot and catchment scales: Role of initial conditions

Zehe, Erwin, Blöschl, Günter January 2004 (has links)
This paper examines the effect of uncertain initial soil moisture on hydrologic response at the plot scale (1 m2) and the catchment scale (3.6 km2) in the presence of threshold transitions between matrix and preferential flow. We adopt the concepts of microstates and macrostates from statistical mechanics. The microstates are the detailed patterns of initial soil moisture that are inherently unknown, while the macrostates are specified by the statistical distributions of initial soil moisture that can be derived from the measurements typically available in field experiments. We use a physically based model and ensure that it closely represents the processes in the Weiherbach catchment, Germany. We then use the model to generate hydrologic response to hypothetical irrigation events and rainfall events for multiple realizations of initial soil moisture microstates that are all consistent with the same macrostate. As the measures of uncertainty at the plot scale we use the coefficient of variation and the scaled range of simulated vertical bromide transport distances between realizations. At the catchment scale we use similar statistics derived from simulated flood peak discharges. The simulations indicate that at both scales the predictability depends on the average initial soil moisture state and is at a minimum around the soil moisture value where the transition from matrix to macropore flow occurs. The predictability increases with rainfall intensity. The predictability increases with scale with maximum absolute errors of 90 and 32% at the plot scale and the catchment scale, respectively. It is argued that even if we assume perfect knowledge on the processes, the level of detail with which one can measure the initial conditions along with the nonlinearity of the system will set limits to the repeatability of experiments and limits to the predictability of models at the plot and catchment scales.
5

IMPROVING WATER STORAGE OF RECLAMATION SOIL COVERS BY FRACTIONATION OF COARSE-TEXTURED SOIL

2013 September 1900 (has links)
Mining operations lead to considerable land disturbance and accumulation of large amounts of waste rock that may contain elevated concentrations of hazardous substances. Without proper capping, they may have considerable negative environmental impact on different spheres of the Earth. Capping of waste rock with a soil cover re-creates the water and nutrient regimes required for the growth of native plants and returns biological productivity and biodiversity of the land to a condition similar to that existing before site disturbance. In many cases the area of disturbance is composed of coarse-textured materials with low water retention properties, which are not desirable in semi-arid zones. This study was conducted to determine (1) whether a considerable increase of water storage is possible after separation of coarse-textured soil into size fractions and layering them in such a way that the finer fraction overlies the coarser fraction; and (2) whether such soil covers are susceptible to preferential flow under various initial and boundary conditions and what influence this type of flow has on residence time. Four types of soil covers were constructed in chambers: homogeneous covers composed of natural sand, two-layered covers with abrupt and gradual interlayer transitions, and four layered soil covers with abrupt transitions. Soil water storage was measured at field capacity (FC). Soil covers were tested under two types of lower boundary conditions: gravel layer and -25-cm matric potential. Flow stability was assessed during intermittent and constant ponded infiltrations. Water storage capacities (WSCs) for soil covers with -25-cm matric potential at the bottom of a cover were additionally simulated in HYDRUS-1D. Water storage capacities increased with the number of layers under both lower boundary conditions. Two-layered covers with a transition layer had slightly lower water storage than the same cover without the transition, due to a decreased hydraulic contrast at the layer interface. Simulated WSCs under -25-cm matric potential at the bottom were in satisfactory agreement with measured WSCs. The wetting front was stable in the homogeneous cover under both initially dry and FC conditions and in the two-layered cover with a gradual transition under initially dry water content during intermittent ponded infiltration. Unstable flow was observed only in the two-layered soil cover under both initial water contents. Other covers were partially unstable under initially air-dry and FC conditions. Generally, the wetting front was more diffuse at FC. Flow in all covers was stable under constant ponded infiltration. The residence time of water increased with the increase in the number of layers under both types of infiltration. Results of the study show that WSC and residence time do increase with increasing number of layers in soil covers, where layers are composed of different fractions of coarse-textured soil. In addition, tested soil covers have shown limited susceptibility to preferential flow even when layered into finer-over-coarser soil systems.
6

Preferential movement of solutes through soils

Bruggeman, Adriana C. Jr. 22 January 1998 (has links)
Detection of unexpectedly high concentrations of agricultural pollutants in ground water have inspired investigations of the role of preferential movement of chemicals through agricultural soils. This research focuses on preferential flow and solute transport processes and the effects of agricultural management practices on these processes. Experimental methods for monitoring preferential flow and solute transport in the field as well as a stochastic, physically-based model for predicting water flow and transport of non-reactive chemicals in heterogeneous soils with naturally occurring macropores were developed and evaluated. Field experiments, aimed at monitoring the occurrence of preferential flow and solute transport, were conducted in a conventionally-tilled and a no-till soybean field in the Coastal Plain of Virginia. A rainfall simulator was used to apply a one-hour storm at rates of 5.0, 6.5 and 7.5 cm/hr to six 1.83 by 1.83 m plots. Chloride was added to the water to serve as a non-reactive tracer. Electrical conductivity equipment provided a useful method for monitoring solute transport. The moisture and solute conditions, observed during a 28-hour period after the start of the rainfall event, clearly indicated the occurrence of preferential flow and solute movement in the field plots. The variability of the solute concentrations in the field plots was generally higher in the no-till plots than in the conventionally-tilled plots. The plots that received rain at 6.5 and 7.5 cm/hr showed more variability than the plots that received rain at 5 cm/hr. The observed solute concentrations indicated that if the solute transport would have taken place by advection only, 61% of the solute transport in the conventionally-tilled plots and 50% of the solute transport in the no-till plots could be attributed to preferential flow. A physically-based, finite element model for simulating flow and solute transport in variably-saturated soils with macropores (MICMAC) was developed. Flow and solute transport are described by the Richards' equation and the convection-dispersion equation. Flow in the macropores is described by the Hagen-Poiseuille equation. An axisymmetric coordinate system is used to simulate the flow and solute transport from the macropore into the surrounding soil matrix, assuming a vertically oriented, surface-vented, cylindrical macropore. Flow and solute transport between the macropore and the soil matrix are driven by the pressure head at the macropore-matrix boundary. To assess the natural heterogeneity of the soil properties a stochastic component was added to the model. Flow and solute transport at the field scale were simulated by regarding the field as a collection of statistically independent, non-interacting vertical soil columns, using Monte Carlo simulation. The sensitivity analysis of the model indicated that, for a soil with macropores, the model is most sensitive to the saturated water content of the soil matrix, the initial moisture content, and the rainfall rate. The model is not very sensitive to the macropore dimensions. Examination of the stochastic approach indicated that the representation of a heterogeneous field as a collection of non-interacting stream columns may substantially underestimate water and solute leaching. A change of 5% in the soil properties of the neighboring soil columns may underpredict the solute leaching, 24 hours after a rainstorm, by 157% for a soil column with a macropore, and by 58% for a soil column without a macropore. These differences decreased to 47% and 8%, respectively, 168 hours after the rainfall. Field application of the model suggested that the model underestimates the leaching of water and solutes from the root zone. However, the computed results were substantially better than the results obtained when no preferential flow component was included in the model. The model performed best under conditions that favored preferential flow, i.e., a high rainfall rate and high initial moisture conditions. The simulated and observed solute concentrations in the root zone agreed reasonably well, although the maxima of the observed data were generally higher than those of the simulated data. / Ph. D.
7

A comparative evaluation of liquid infiltration methods for bioreactor landfills

Murphy, Timothy J. 20 July 2004 (has links)
No description available.
8

Preferential and Non-Darcy Flows in the Hyporheic Zone: Surface Water-Groundwater Hydraulics and Effects on Stream Functions

Menichino, Garrett Thomas 21 November 2013 (has links)
Surface water-groundwater interaction can provide various stream functions including temperature regulation, nutrient cycling, pollutant attenuation, and habitat creation. However previous literature is divided on the extent and conditions of these benefits. This dissertation has explored the dominance of hydraulic conductivity (K) on hyporheic hydraulics and implications to hyporheic zone functions through a series of modeling studies and field experiments. Computational Fluid Dynamics (CFD) software was used to model the effect of varying K on weir-induced hyporheic exchange hydraulics and heat transport. Fundamental shifts in hydraulics and temperature dynamics occurred at threshold K's. Surface water began noticeably sinking into the bed above a threshold of K=10-3 m/s and inertial forces caused deviation from Darcy's Law. The heat transport model indicated net downstream surface water cooling from weir-induced exchange was maximized by maximizing K (flow-limited function) and thermal heterogeneity increased with K, particularly above K=10-5 m/s. Results suggest that using CFD to predict surface water-groundwater interaction may be important to accurately predict hyporheic hydraulics and functions dependent on flow-rate or residence time. The importance of macropores to hyporheic transport through meander bends was explored. Transport velocities, hydraulic head gradients, and solute transport rates through the meander bend were increased by macropores. Results indicate that macropores can dictate solute or pollutant transport through meander bends and in the hyporheic zone, which in turn may influence biogeochemical cycling and pollutant attenuation. Surface-connected macropores along streams were studied as hydrologically important subsurface heterogeneities for surface water-groundwater interaction. Macropores were common geomorphic features in the Appalachian province of southwestern Virginia, and were inundated during storm events over a one-year period. Banks with macropores experienced increased hydraulic head fluctuations, temperature fluctuations, and K. Macropores increased bank storage rates and solute transport between the channel and riparian groundwater zones, which in turn may influence biogeochemical cycling, pollutant attenuation, and hyporheic habitat. Macropores may be important to hyporheic flow and solute transport in a wide range of conditions and may broaden the portion of the landscape in which hyporheic exchange is important. Future work is needed to further assess the impacts of macropores on hyporheic functions and explore new methods to map and quantify macropore geometries and inter-connectivity. / Ph. D.
9

An investigation into the influence of soil pattern on preferential flow and groundwater recharge in fractured bedrock and cover sand aquifers

Stander, McLachlan Du Toit 12 1900 (has links)
Thesis (MScAgric)--Stellenbosch University, 2011. / ENGLISH ABSTRACT: Increased pressure on groundwater sources due to increased population size and threats of climate change is driving research to better understand the process of aquifer recharge. Soil pattern is of interest as it serves to partition rainwater into different flowpaths destined for surface runoff, evapotranspiration and deep percolation. The challenges inherent to studying these flowpaths are almost universal as uncertainties concerning spatial and temporal heterogeneity in catchments make the upscaling of models complex. This research addresses these challenges as it aims to improve the catchment scale hydrological models of two aquifer systems: One a fractured bedrock system at the Kogelberg Nature Reserve, Kleinmond, and the other a cover sand system in Riverlands Nature Reserve, Malmesbury. This study focussed on strengthening the link between what is known about a given soil form and the hydrological assumptions that can be drawn from that classification, and formulating the results so that they may ultimately be used to calibrate the recharge prediction models for the respective catchments. The research was done in two parts: The first phase was to conduct soil surveys in both reserves during which soils were classified according to South African Soil Classification. Samples were collected at representative observation points which provided textural data for use in pedotransfer functions (PTFs). These PTFs were used to estimate plant available water (PAW) and hydraulic conductivity (K) for the observed profiles. Infiltration experiments were subsequently done to investigate the infiltration patterns of distinctly different soil forms at two sites from each reserve. The experiments included double ring and mini disc infiltration, volumetric water content determination and flow path visualisation using a staining dye. A statistical comparison between the hydrological properties (K and PAW) of the different soil forms suggest that hydraulic properties differed between the deep sandy soil forms (Fernwood, Pinegrove and Witfontein in Kogelberg and Witfontein, Concordia and Lamotte in Riverlands) and the shallow rocky soil forms (Cartref and Glenrosa in Kogelberg). Thus grouping of hydrological similar units (HSUs) could be done on the basis of the soil forms present within the given catchments. The infiltration study showed that shallow, rocky soils that grade into bedrock would have infiltration rates far greater than those estimated using PTFs in Kogelberg. This is due to the prevalence of continuous preferential flow (PF) of water between coarse fragments in these profiles. Recharge estimates would thus be inaccurate in such soils and calibration using locally derived data is recommended. On the contrary, PTFs produced accurate infiltration estimates relative to measured infiltration rates in deep sandy soils in Kogelberg and Riverlands. The Lamotte soil form is an example of such a soil form. It should however be noted that an increase in PF in these soils had subsequently higher K values than estimated, thus illustrating the link between PF and accelerated infiltration rates. These results confirm that using soil survey information, in the form of a soil map, and calibrated hydrological properties, one can delineate HSUs that encompass a large degree of heterogeneity in a given catchment. / AFRIKAANSE OPSOMMING: Verhoogde druk op grondwaterhulpbronne weens die groeiende bevolking en klimaatsverandering dryf tans navorsing om akwifeer hervulling beter te verstaan. Die grondlaag is van belang sienend dat dit reënwater verdeel in oppervlak afloop, evapotranspirasie en diep dreinering. Die uitdagings in hidrologiese navorsing is universeel as gevolg van onsekerhede oor ruimtelike en tydelike variasie wat lei tot komplekse grondwatermodelle. Diè navorsing mik om die tekortkominge in akwifeer hervulling aan te vul deur groundwatermodelle van twee akwifeersisteme te verbeter: Die een is 'n gebroke rots sisteem in die Kogelberg Natuur Reservaat, Kleinmond, en die ander is 'n sand-bedekde sisteem in Riverlands Natuur Reservaat, Malmesbury. Die navorsing streef om die verhouding tussen 'n spesifieke grondvorm en sy hidroliese vloeipaaie te bestudeer en om die gevolgtrekkings so te formuleer dat dit kan gebruik word om die onderskeie grondwatermodelle te kalibreer. Die eerste fase van die navorsing was om 'n grondopname van die onderskeie reservate te doen waartydens die gronde geklassifiseer was volgens die Suid Afrikaanse Grondklassifikasie Sisteem. Grondmonsters is by verteenwoordigende observasiepunte geneem en geanaliseer om tekstuurdata vir pedo-oordraagbare-funksies (PTFs) te kry. Die PTFs was gebruik om plant beskikbare water (PBW) en hidrouliese geleiding (K) te voorspel vir die verskeie observasiepunte. Infiltrasie eksperimente was daarna gedoen om die infiltrasie patroon van twee verskillende grondvorms van elke reservaat te bestudeer. Die eksperimente sluit dubbel- en minidisk-infiltrasie, volumetriese waterinhoud bepaling en vloeipad visualisering met die gebruik van 'n kleurstof in. Die statistiese vergelyking van die hidrouliese eienskappe (K en PBW) en grondvorm dui aan dat die hidrouliese eienskappe verskil tussen die diep, grondvorms met 'n oorwegende sand tekstuur (Fernwood, Pinegrove en Witfontein in Kogelberg en Witfontein, Concordia en Lamotte in Riverlands) en die vlakker, klipperige grondvorms (Cartref en Glenrosa in Kogelberg). Groepering van hidrologies soortgelyke eenhede (HSE's) kan dus op die basis van die teenwoordige grondvorms in 'n opvangsgebied gedoen word. Die infiltrasie studie het bewys dat vlak, klipperige gronde wat tot die rotsbodem gradueer 'n baie hoër infiltratsie tempo sal hê as die PTF voorspelde waardes. Dit is as gevolg van die voorkoms van aaneenlopende voorkeurvloei (VV) van water tussen die growwe materiaal in die profiele, veral die gebroke rots ondergorond. Voorspellings van akwifeer hervulling sal dus onakkuraat wees en kalibrasie met plaaslike data word dus aanbeveel. In teendeel met die begenoemde, het die PTFs akkurate voorspellings gemaak relatief tot die gemete infiltrasie tempo's in die diep sanderige grondvorms in Kogelberg en Riverlands. Dit was duidelik met metings dat 'n toename in aaneenlopende VV hoër gemete K waardes getoon as die voorspelde waardes. Die verband tussen VV en verhoogde infiltrasie tempo word dus hiermee geillustreer. Die resultate bevestig dus dat grondopname data, in die vorm van 'n grondkaart en gekalibreerde hidrouliese eienskappe gebruik kan word om hidrologies soortgelyke eenhede uiteen te sit wat die meerderheid van die variasie in 'n gegewe opvangsgebied insluit. Die HSE's kan gebruik word om grondwatermodelle meer akkuraat te laat funksioneer en dus beter voorspellings te genereer.
10

Use of soil moisture dynamics and patterns at different spatio-temporal scales for the investigation of subsurface flow processes

Blume, Theresa, Zehe, Erwin, Bronstert, Axel January 2009 (has links)
Spatial patterns as well as temporal dynamics of soil moisture have a major influence on runoff generation. The investigation of these dynamics and patterns can thus yield valuable information on hydrological processes, especially in data scarce or previously ungauged catchments. The combination of spatially scarce but temporally high resolution soil moisture profiles with episodic and thus temporally scarce moisture profiles at additional locations provides information on spatial as well as temporal patterns of soil moisture at the hillslope transect scale. This approach is better suited to difficult terrain (dense forest, steep slopes) than geophysical techniques and at the same time less cost-intensive than a high resolution grid of continuously measuring sensors. Rainfall simulation experiments with dye tracers while continuously monitoring soil moisture response allows for visualization of flow processes in the unsaturated zone at these locations. Data was analyzed at different spacio-temporal scales using various graphical methods, such as space-time colour maps (for the event and plot scale) and binary indicator maps (for the long-term and hillslope scale). Annual dynamics of soil moisture and decimeterscale variability were also investigated. The proposed approach proved to be successful in the investigation of flow processes in the unsaturated zone and showed the importance of preferential flow in the Malalcahuello Catchment, a datascarce catchment in the Andes of Southern Chile. Fast response times of stream flow indicate that preferential flow observed at the plot scale might also be of importance at the hillslope or catchment scale. Flow patterns were highly variable in space but persistent in time. The most likely explanation for preferential flow in this catchment is a combination of hydrophobicity, small scale heterogeneity in rainfall due to redistribution in the canopy and strong gradients in unsaturated conductivities leading to self-reinforcing flow paths.

Page generated in 0.0866 seconds