• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 29
  • 4
  • 3
  • 2
  • 1
  • Tagged with
  • 46
  • 46
  • 22
  • 19
  • 11
  • 10
  • 10
  • 10
  • 9
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Illuminating controls on solute and water transport in the critical zone

Radolinski, Jesse Benjamin 01 November 2019 (has links)
Earth's near-surface environment sustains nearly all terrestrial life, yet this critical zone is threatened by the environmental migration of new and potentially harmful compounds produced to support a growing human population. Traditional transport equations often fail to capture the environmental behavior of these emerging contaminants due to issues such as flow heterogeneity. Thus, there is a need to better evaluate controls on pollutant partitioning in Earth's critical zone. Our first study investigated the transport and distribution of the neonicotinoid insecticide thiamethoxam (TMX) by growing TMX-coated corn seeds in coarse vs fine-textured soil columns maintained with versus without growing corn plants. Fine-textured soil transported TMX at concentrations that were two orders of magnitude higher than coarse-textured soil, due to preferential flow in the fine-textured soil columns and higher evapotranspiration (ET) concentrating more TMX in the coarse-textured soil. Living plants increased the concentration of TMX at depth, indicating that growing plants may drive preferential transport of neonicotinoids. For the second study we planted TMX-coated corn seeds and maintained field plots with and without viable crops (n = 3 plots per treatment), measuring TMX concentrations in three hydrological compartments (surface runoff, shallow lateral flow, and deep drainage) and soil. TMX was transported in the highest concentrations via surface runoff, while also showing continual migration within the subsurface throughout the growing season. Plants facilitated downward migration of TMX in soil yet restricted losses in drainage. For our final study, we used a simple isotope mixing method to evaluate how preferential flow alters the influence of compound chemical properties on solute transport. We applied deuterium-labeled rainfall to plots containing manure spiked with eight veterinary antibiotics with a range of mobility, and quantified transport to suction lysimeters (30 and 90 cm). We showed that low preferential flow (<20%) eliminates the influence of compound chemical properties and, contrary to conventional understanding, more preferential flow (~ >20%) amplifies these chemical controls, with more mobile compounds appearing in significantly higher concentrations than less mobiles ones. Altogether, we provide a refined understanding of solute partitioning in the critical zone necessary to improve process-based transport modeling. / Doctor of Philosophy / Earth’s near-surface environment sustains nearly all terrestrial life, yet this critical zone is threatened by the environmental migration of new and potentially harmful pollutants produced to support a growing human population. Additionally, traditional mathematical methods fail to accurately describe the behavior of these emerging pollutants in soils due to complex flow patterns. Thus, scientists need to better understand how these pollutants contaminate water bodies in the critical zone. We first conducted a greenhouse experiment to understand and measure the amount of the neonicotinoid insecticide thiamethoxam (TMX) that could move from coated corn seeds through the soil environment. Water draining from fine-textured soil had >100 times more TMX than water draining from course-textured soil, due to commonly occurring fractures/cracks in the finer-particle soil and more evaporation from soil and plant leaves sequestering TMX in the sandy soil. Growing plants amplified TMX movement through soil voids to lower depths. We then conducted a field study to determine how much TMX could move to the surrounding environment throughout the corn growing season. We found that plants aided in downward movement of TMX yet restricted total losses from the plot overall by removing soil water. Our third study investigated the degree to which chemical pollutant properties control movement of solutes when water flows preferentially through soil void space. Common dairy manure was spiked with eight pollutants ranging in chemical attraction to soil and was added to an agricultural field. After irrigation, we found that when total drainage water was less than 20% derived from preferential flow, chemical properties had a negligible effect on the amount of pollutant in draining soil water. Contrary to conventional understanding, when draining water contained more than 20% preferential flow, chemical properties had a strong influence on the amount of pollutant detected. Altogether, we provide new understanding of how solutes move though the critical zone. These findings are necessary to create mathematical tools that more accurately depict pollutant behavior below-ground.
22

Preferential flow modelling in a vadose zone using macro 5.0 – Cape flats porous sands and Mpumalanga highveld clays case studies

Majola, Kwazikwakhe Alfred January 2008 (has links)
Magister Scientiae - MSc / The objectives of this study were: To review and understand flow and transport processes in unsaturated zones. In this study, particular emphasis is placed on understanding mechanisms that cause non-uniform (preferential) flow for two casestudies, namely the Cape Flats sandy environment and the Mpumalanga Highveld fractured rock environment. To evaluate the adequacy of models, in particular MACRO 5.0, in simulating flow and transport in the vadose zone, by making use of two case study sites (Cape Flats and Mpumalanga Highveld). Of particular importance is the evaluation of transfer coefficients to represent fluid and solute exchange between macropores and matrix. To run a sensitivity analysis with MACRO 5.0 in order determine which input model parameters are the most relevant in describing the effects of preferential flow in water and solute transport.
23

Preferential Flow Modelling in a Vadose Zone Using Macro 5.0 –Cape Flats Porous Sands.

Majola, Kwazikwakhe Alfred. January 2008 (has links)
<p><font face="Helvetica"> <p align="left">The objectives of this study were:&nbsp / To review and understand flow and transport processes in unsaturated zones. In this study, particular emphasis is placed on understanding mechanisms that cause non-uniform (preferential) flow for two casestudies, namely the Cape Flats sandy environment and the Mpumalanga Highveld fractured rock environment.&nbsp / To evaluate the adequacy of models, in particular MACRO 5.0, in simulating flow and transport in the vadose zone, by making use of two case study sites (Cape Flats and Mpumalanga Highveld). Of particular importance is the evaluation of transfer coefficients to represent fluid and solute exchange between macropores and matrix.&nbsp / To run a sensitivity analysis with MACRO 5.0 in order determine which input model parameters are the most relevant in describing the effects of preferential flow in water and solute transport.</p> </font></p>
24

Preferential Flow Modelling in a Vadose Zone Using Macro 5.0 –Cape Flats Porous Sands.

Majola, Kwazikwakhe Alfred. January 2008 (has links)
<p><font face="Helvetica"> <p align="left">The objectives of this study were:&nbsp / To review and understand flow and transport processes in unsaturated zones. In this study, particular emphasis is placed on understanding mechanisms that cause non-uniform (preferential) flow for two casestudies, namely the Cape Flats sandy environment and the Mpumalanga Highveld fractured rock environment.&nbsp / To evaluate the adequacy of models, in particular MACRO 5.0, in simulating flow and transport in the vadose zone, by making use of two case study sites (Cape Flats and Mpumalanga Highveld). Of particular importance is the evaluation of transfer coefficients to represent fluid and solute exchange between macropores and matrix.&nbsp / To run a sensitivity analysis with MACRO 5.0 in order determine which input model parameters are the most relevant in describing the effects of preferential flow in water and solute transport.</p> </font></p>
25

An exploration of the rainfall controls on pesticide transport via fast flow pathways

McGrath, Gavan January 2007 (has links)
[Truncated abstract] Pesticides are often transported to streams and/or groundwater as a result of the occurrence of rainfall events which trigger surface runoff or rapid preferential flow through the unsaturated zone. Much of the theory of solute transport has been derived assuming steady state or slowly varying upper boundary conditions and continuous, averaged process descriptions. However, a review of pesticide dynamics reveals that pesticides are episodically transported, predominantly through discrete flow pathways and this transport is often initiated as a near surface process, driven by naturally variable and intermittent rainfall intensities. The objective of the thesis is to better understand how the structure of natural variability of rainfall intensities impacts upon pesticide transport by these fast flow processes. We first conducted an analysis of a lysimeter leaching experiment that was aimed at identifying the rainfall controls on herbicide transport. Multivariate analyses revealed that average water balance behaviour at low temporal resolution controlled water and bromide transport while extreme rainfall events and rainfall event frequency controlled herbicide transport. A minimalist event based modelling approach was able to simulate the observed herbicide transport without or with only minor calibration. ... Finally we conduct a climate based regional risk assessment of pesticide leaching for the Wheatbelt region of the south-west of Western Australia. This is done for a suite of pesticides on a single soil to evaluate the impact of rainfall variability alone. Moderately sorbing, slowly degrading solutes have a greater regional potential for rapid leaching than both strongly and weakly sorbing solutes. High leaching potentials are found along the western and southern coast and in the far-east, with a band of low leaching potential through the central Wheatbelt. This is despite higher annual rainfall in the central areas compared to the east, and it is found that this occurs because of a change in the dominant fast flow triggers from frequent low intensity rainfall on the coasts to high intensity infrequent storms in the east. The coefficient of variation of annual leaching loads is similarly distributed. Spatial patterns of leaching potential depend upon chemical properties and application time. Peak loads of chemicals to fast flow pathways are found to converge to mid-winter, indicating periods of high loads of multiple pesticides may be an unavoidable consequence of the seasonality of storm properties.
26

Preferential flow modelling in a vadose zone using macro 5.0 - Cape Flats porous sands and Mpumalanga highveld clays case studies

Majola, Kwazikwakhe January 2008 (has links)
>Magister Scientiae - MSc / Understanding fluid flow and solute transport within the vadose (unsaturated) zone is an essential prerequisite for protection of groundwater from contaminant sources occurring overland. Preferential flow paths in the vadose zone pose a significant problem because they are potential avenues for rapid transport of chemicals from contamination sources to the water table. The objectives of this study were: i) To review and understand flow and transport processes in unsaturated zones. In this study, particular emphasis is placed on understanding mechanisms that cause non-uniform (preferential) flow for two case studies, namely the Cape Flats sandy environment and the Mpumalanga Highveld fractured rock environment. ii) To evaluate the adequacy of models, in particular MACRO 5.0, in simulating flow and transport in the vadose zone, by making use of two case study sites (Cape Flats and Mpumalanga Highveld). Of particular importance is the evaluation of transfer coefficients to represent fluid and solute exchange between macropores and matrix. iii) To run a sensitivity analysis with MACRO 5.0 in order determine which input model parameters are the most relevant in describing the effects of preferential flow in water and solute transport. Two case studies were investigated, the first at a landfill site overlying sandy unconfined aquifer (Coastal Park, Cape Town), and the second at an industrial site overlying cracking clayey soil and fractured rocks (Mpumalanga Highveld - Secunda, Mpumalanga Province). For the Coastal Park site, simulations of soil water content and leaching of a generic mobile contaminant were compared to monitored soil water contents and chloride concentrations in groundwater. For the Mpumalanga Highveld site, simulations of soil water content and concentrations of boron and fluoride originating from effluent irrigation were compared to soil profile measurements. In both cases, the MACRO 5.0 model predictions agreed with measurements well, provided appropriate input calibration data were used. The sensitivity analysis indicated that soil water properties related to preferential flow (hydraulic conductivity at the boundary between macropores and matrix, soil water content and tension, and diffusion) have influence on simulation results. Similarly, the solute balance is mostly influenced by degradation rate coefficients (both in solid and liquid phases), sorption distribution coefficients and solute concentrations.
27

Abundance, Distribution, and Geometry of Naturally Occurring Macropores in Stream Banks

McEwen, Amiana Marie 13 June 2018 (has links)
Preferential flow paths are areas of substantially higher permeability than surrounding media. Macropores and soil pipes are a type of preferential flow path where conduit-like voids in the subsurface are typically greater than three millimeters in diameter. They are known to occur in agricultural and forest soils, often as a result of biological and physical processes. Macropores also exist in stream banks and have the potential to enhance the exchange of water and solutes between the channel and riparian groundwater, yet the geographic distribution of bank macropores is unknown. Here we determined the abundance, distribution, and geometry of naturally occurring surface-connected macropores in the banks of 20 streams across five physiographic provinces in the Eastern United States. We identified a total of 1,748 macropores, which were present in all 20 streams, with 3.8 cm average width, 3.3 cm average height, 11.5 cm average depth, and 27.9 cm average height above water surface elevation. Macropore abundance, distribution and geometry were statistically different between physiographic provinces, stream orders, and soil textures, with the latter being the most important. Macropores tended to be larger and more abundant in soils with a high cohesiveness and a low hydraulic conductivity compared to soils with a low cohesiveness and high hydraulic conductivity. As a result, streams with greater longitudinal heterogeneity of soil texture also had greater heterogeneity of macropore density. However, macropore size and height above baseflow water surface elevation also increased with stream order and therefore stream size. This work represents the first attempt to characterize macropores across a variety of riverine systems and presents evidence that macropores may play an important role in hyporheic exchange within stream banks. These results may have water quality implications, where macropores may enhance hyporheic exchange yet reduce the filtering capacity of riparian buffer zones. / MS
28

Phosphorus in Preferential Flow Pathways of Forest Soils in Germany.

Julich, Dorit, Feger, Karl-Heinz 27 March 2017 (has links) (PDF)
The transport of nutrients in forest soils predominantly occurs along preferential flow pathways (PFP). This study investigated the composition of phosphorus (P) forms in PFPs and soil matrix in several temperate beech forests with contrasting soil P contents in Germany. The PFPs were visualized using dye tracer experiments. Stained and unstained soil was sampled from three profile cuts per plot and analyzed for P fractions. The results show that labile P concentrations were highest in the O-layer and had the same range of values at all sites (240–320 mg·kg−1), although total P (TP) differed considerably (530–2330 mg·kg−1). The ratio of labile P to TP was significantly lower in the P-rich soil compared to the medium and P-poor soils. By contrast, the ratio of moderately labile P to TP was highest at the P-rich site. The shifts in P fractions with soil depth were generally gradual in the P-rich soil, but more abrupt at the others. The contents of labile and moderately labile P clearly differed in PFPs compared to soil matrix, but not statistically significant. The studied soils are characterized by high stone contents with low potential for P sorption. However, indications were found that labile organically bound P accumulates in PFPs such as biopores.
29

Analysis of flow patterns and flow mechanisms in soils / Analyse des modèles d'écoulement et les mécanismes d'écoulement dans les sols

Bogner, Christina 06 July 2009 (has links)
Des écoulements matriciels et des flux préférentiels peuvent se produire concurremment dans le même sol. Ces deux régimes d’écoulements se manifestent par des empreintes de flux caractéristiques qu’on peut visualiser par des essais de traçage. Afin d’extraire l’information quantitative des essais de traçage un grand nombre de méthodes existe. On peut, entre autre, décrire les empreintes de traceur par ce qu’on appelle la fonction de couverture, c’est à dire le pourcentage de région teintée par un traceur coloré en fonction de la profondeur du sol. En utilisant la statistique des valeurs extrêmes cette fonction peut être réinterprétée comme une fonction exprimant la probabilité de trouver le traceur à une profondeur donnée. Ainsi, la fonction de probabilité à deux paramètres 1 – H, H étant la distribution de Pareto généralisée, peut être ajustée. Le paramètre de forme de cette fonction est utilisé comme indice de risque de propagation verticale des solutés. Nous avons effectué des essais de traçage au Bleu Brillant FCF sur trois sites différents : dans une forêt d’épicéa dans le sud-est de l’Allemagne, dans une forêt tropicale humide montagnarde en Équateur et sur un champ agricole au sud de la France. Nous avons examiné la capacité de l’indice de risque à rassembler l’information principale des essais de traçage et à caractériser les empreintes de flux dans des sols différents, sous conditions aux limites diverses. Nos résultats indiquent que l’indice de risque est, dans une certaine mesure insensible aux changements des conditions aux limites (comme l’intensité d’irrigation). Par contre, l’humidité initiale du sol semble influencer cet indice de façon importante. L’ajustement des paramètres de la fonction Pareto généralisée s’avère difficile si la fonction de couverture fluctue ou ne décroît pas de manière monotone. Ceci peut être dû à la tortuosité des chemins d’écoulement, à la variation des mécanismes de flux ou aux changements de propriétés physiques du sol (stratification). Ainsi, dans des sols stratifiés nous avons restreint l’analyse à la partie inférieure du profil de sol. En effet, étant donné que la théorie de l’indice de risque est basée sur les valeurs extrêmes de propagation verticale de solutés c’est la partie inférieure qui est la plus intéressante. Nous proposons de combiner les deux paramètres de la fonction Pareto généralisée et d’utiliser la distribution 1 – H complète afin d’estimer le risque de propagation verticale des solutés dans le sol. Bien que l’indice de risque montre une certaine invariance vis-à-vis du changement des conditions aux limites il n’est pas un paramètre intrinsèque de sol. Comme le régime d’écoulement dans un même sol peut être dominé soit par le flux matriciel soit par le flux préférentiel le risque de propagation verticale des solutés change. Ceci est une réalité physique et non un défaut dans la théorie de l’indice de risque. Les paramètres de la fonction de Pareto généralisée capturent le régime d’écoulement dominant représenté par les empreintes du traceur. En prenant en compte les conditions aux limites de l’essai de traçage comme l’intensité d’irrigation, le traceur utilisé, l’humidité initiale du sol ou la nature de la végétation (pérenne ou saisonnière, type d’enracinement) il est ainsi possible de comparer des sites différents ou des résultats obtenus sur le même site sous conditions aux limites différentes et d’estimer le risque de propagation verticale de solutés. L’analyse d’image d’empreintes de flux basée sur le risque de propagation verticale de solutés a révélé l’existence d’écoulements préférentiels sur le site allemand. Afin de comprendre les mécanismes de flux ainsi que les impacts éventuels des flux préférentiels sur la chimie du sol nous avons analysé la texture du sol, la densité racinaire, la densité du sol, la concentration des cations échangeables, le pH, et les teneurs en C et N total dans les chemins préférentiels et la matrice du sol. Les résultats de la modélisation indiquent que sur ce site les racines constituent les chemins préférentiels et créent les écoulements le long des macropores, surtout dans la partie supérieure du sol. Dans la partie inférieure la densité racinaire diminue et l’infiltration hétérogène à partir des chemins préférentiels dans la matrice provoque un écoulement non-uniforme. Nous n’avons constaté aucune différence significative de texture, mais des différences de densité du sol dans les chemins préférentiels par rapport à celle de la matrice. Ceci est probablement dû à la quantité de matière organique plus élevée dans les chemins préférentiels. Nous avons également trouvé des pH plus acides, plus de Ca, plus de Mg, et plus de C et de N dans les chemins préférentiels. Comparé à la matrice, des quantités plus importantes d’Al et de Fe (mais de petites quantités absolues) ont été trouvés dans la partie inférieure du sol où l’écoulement préférentiel le long des macropores créés par les racines diminue et le flux matriciel hétérogène domine. Ces propriétés chimiques distinctes peuvent s’expliquer par l’activité racinaire et la translocation de solutés et du carbone organique dissous (COD) le long des chemins préférentiels. Le temps de contact entre le COD et le sol étant réduit il est transporté plus bas dans le profil où il peut potentiellement créer des complexes organo-minéraux. Ainsi, l’écoulement préférentiel est un mécanisme qui peut promouvoir la séquestration de C en sous-sol et n’influence pas uniquement son environnent immédiat, mais aussi les horizons sous-jacents. Un des acquis majeurs de cette thèse est le nombre important d’images d’empreintes de flux issues des sols différents. Dans les études qui suivront les méthodes récentes de réduction de dimensionnalité peuvent être employées afin de trouver d’éventuelles structures de basse dimensionnalité dans ces images / Matrix flow and preferential flow can occur concurrently in the same soil. Both flow regimes produce typical flow patterns that can be visualised in dye tracer experiments. To extract quantitative information from dye tracer studies a vast variability of approaches exists. One of them is to describe dye patterns by the so called dye coverage function, i.e. the percentage of stained area per soil depth. Based on extreme value statistics the dye coverage function can be reinterpreted as a probability function to find the tracer in a certain depth. Therefore, the two-parametric probability distribution 1 – H, H being the generalised Pareto distribution, can be fitted to the dye coverage function. The form parameter of this distribution serves as a risk index for vertical solute propagation. We did tracer experiments with Brilliant Blue FCF at three different study sites: in a Norway spruce forest in southeast Germany, in a tropical mountain rainforest in southern Ecuador and on an agricultural field in southern France. We tested the ability of the risk index to summarise main information obtained in dye tracer studies and characterise flow patterns in different soils under varying boundary conditions. Our results suggest that the risk index is to some degree invariant to changing experimental conditions (such as irrigation rate). The initial soil moisture, however, seems to have a large influence on the risk index. It is difficult to adjust the parameters of the generalised Pareto distribution when the dye coverage function fluctuates or does not decrease monotonically. This might be due to tortuosity of paths, varying flow mechanism or changing soil physical properties (stratification). Thus, in stratified soil, we restricted the analysis to the lowest part of the profile. Since the theory of the risk index is based on extreme values of vertical solute propagation it is the lowest part of the profile that is the most interesting. We propose to combine the two parameters of the generalized Pareto distribution and to use the complete distribution 1 - H to estimate the risk of vertical solute propagation in soils. Despite a certain resistance to changes of experimental conditions, the risk index is not an intrinsic soil parameter. Since the flow regime in the same soil can be dominated either by preferential flow or by uniform matrix flow, the risk of vertical solute propagation will change. It is a physical reality and not a default in the risk index theory. The adjusted parameters of the generalised Pareto distribution will capture the dominant flow regime as reflected by tracer flow patterns. Bearing in mind the boundary conditions of the tracer experiment like irrigation rate, the tracer employed, soil initial moisture or type of vegetation (permanent or seasonal, deep rooted or shallow rooted) it is possible to compare different study sites or to consider the same site at different boundary conditions and to access the risk of vertical solute propagation. Pattern analysis based on the risk index for vertical solute propagation revealed the occurrence of preferential flow at the German study site. To gain insight in flow mechanisms and possible impacts of preferential flow on soil chemistry we analysed soil texture, fine root density, soil bulk density, exchangeable cations, pH and total C and N contents in preferential flow paths and soil matrix. Results from linear mixed-effects models suggested that at this study site roots constituted main preferential flow paths and induced macropore flow, especially in the topsoil. In the subsoil root density decreased and inhomogeneous infiltration from preferential flow paths into the soil matrix caused non-uniform flow. There were no textural differences between the flow domains, but smaller bulk densities in preferential flow paths. This is probably due to a higher soil organic matter content in preferential flow paths. We found smaller pH values, more Ca, more Mg, more C and more N in preferential flow paths. Compared to the adjacent soil matrix, more Al and more Fe (but small absolute amounts) were found in the subsoil where macropore flow along root channels decreases and heterogeneous matrix flow dominates. These distinct chemical properties can be explained by root activity and translocation of solutes and DOC (dissolved organic carbon) via preferential flow paths. During transport along preferential flow paths contact time between DOC and soil is reduced so that DOC is transported to greater depth where it potentially forms organo-mineral associations. If this holds true, preferential flow is a mechanism that promotes C sequestration in subsoil and does not only influence its immediate environment around paths, but also underlying subsoil horizons. A major outcome of this thesis is the large number of images of flow patterns from different soils. Further studies could employ recent dimensionality reduction techniques to investigate whether there is a low dimensional structure underlying these images / Matrixfluss und präferentieller Fluss können in ein und demselben Boden gleichzeitig auftreten. Beide Fließregime erzeugen charakteristische Fließmuster, die in Versuchen mit Farbtracern sichtbar gemacht werden können. Es existiert eine Reihe von Methoden, um Tracerversuche quantitativ auszuwerten. Eine davon ist die Beschreibung der Fließmuster durch die so genannte Deckungsgradfunktion, den Anteil der gefärbten Fläche pro Tiefe. Die Methoden der Extremwertstatistik erlauben eine Neuinterpretation der Deckungsgradfunktion als eine Wahrscheinlichkeitsfunktion, den Tracer in einer bestimmten Tiefe anzutreffen. Demzufolge kann die zweiparametrige Wahrscheinlichkeitsfunktion 1 – H (H: verallgemeinerte Paretoverteilung) an die Deckungsgradfunktion angepasst werden. Der Formparameter dieser Verteilung dient als Risikoindex für vertikale Ausbreitung von gelösten Substanzen. Tracerversuche mit Brilliant Blue FCF wurden an drei unterschiedlichen Standorten durchgeführt: in einem Fichtenwald in Südostdeutschland, einem Bergregenwald in Südostecuador und an einem landwirtschaftlichen Standort in Südfrankreich. Es wurde überprüft, ob die wichtigsten Ergebnisse aus Tracerversuchen auf unterschiedlichen Böden und bei verschiedenen Randbedingungen mithilfe des Risikoindex beschrieben werden können. Die Ergebnisse zeigen eine gewisse Unabhängigkeit des Risikoindex von experimentellen Randbedingungen (wie z. B. Beregnungsintensität). Dagegen scheint die Bodenfeuchte eine zentrale Rolle zu spielen. Schwierigkeiten bei der Anpassung der Parameter der verallgemeinerten Paretoverteilung ergeben sich, wenn die Deckungsfunktion fluktuiert oder nicht monoton fallend ist. Dies kann möglicherweise auf die Tortuosität von Fließpfaden, variierenden Fließmechanismen oder sich verändernden bodenphysikalischen Eigenschaften (Stratifikation) zurückgeführt werden. Daher wurde die Musteranalyse in stratifizierten Böden auf den Unterboden begrenzt. Da die dem Risikoindex zugrunde liegende Theorie auf den Extremwerten der vertikalen Ausbreitung von gelösten Stoffen basiert, gilt das Hauptinteresse dem untersten Teil des Bodenprofils. Wir schlagen vor, die beiden Parameter der verallgemeinerten Wahrscheinlichkeitsverteilung zu nutzen, um das Risiko der vertikalen Ausbreitung von gelösten Stoffen in Böden abzuschätzen. Obwohl der Risikoindex eine gewisse Toleranz gegenüber sich ändernden Randbedingungen zeigt, ist er kein intrinsischer Bodenparameter. Da das Fließgeschehen in ein und demselben Boden sowohl vom Matrix- als auch vom präferentiellen Fluss dominiert werden kann, ändert sich das Risiko der vertikalen Ausbreitung von gelösten Stoffen. Dies ist physikalische Realität und kein Fehler in der Theorie des Risikoindex. Die angepassten Parameter der verallgemeinerten Paretoverteilung erfassen das durch den Tracer sichtbar gemachte dominante Fließregime. Unter der Berücksichtigung der Randbedingungen des Tracerexperiments wie Beregnungsintensität, des verwendeten Tracers, Bodenfeuchte oder Art der Vegetation (einjährig, mehrjährig oder perennierend, tiefwurzelnd oder flachwurzelnd) ist es möglich, unterschiedliche Standorte zu vergleichen oder denselben Standort unter verschiedenen Randbedingungen zu betrachten und das Risiko der vertikalen Ausbreitung von gelösten Stoffen abzuschätzen. Extremwertstatistikgestützte Musteranalyse zeigte das Auftreten von präferentiellem Fluss auf dem Standort in Südostdeutschland. Um die Fließmechanismen und mögliche Auswirkungen des präferentiellen Flusses auf die Bodenchemie aufzudecken, wurden Textur, Feinwurzeldichte, Trockenraumdichte, austauschbare Kationen, pH, Gehalt an totalem C und N in präferentiellen Fließwegen und Bodenmatrix analysiert. Ergebnisse aus gemischten Modellen zeigen, dass auf diesem Standort präferentielle Fließwege durch Wurzeln gebildet werden, und zwar hauptsächlich im Oberboden. Im Unterboden nimmt die Durchwurzelung ab, und heterogene Infiltration aus den präferentiellen Fließpfaden in die Bodenmatrix führt zu ungleichmäßigem Matrixfluss. Es wurden keine signifikanten Unterschiede in der Textur gefunden. Allerdings ist die Trockenraumdichte in den präferentiellen Fließwegen geringer als in der Bodenmatrix, wahrscheinlich bedingt durch den erhöhten Gehalt an organischer Materie. Weiterhin wurden in den präferentiellen Fließwegen niedrigere pH-Werte, höherer Gehalt an Ca, Mg, C und N gemessen. Im Vergleich zur umgebenden Bodenmatrix wurde im weniger durchwurzelten und von heterogenem Matrixfluss dominierten Unterboden höherer Gehalt an Al und Fe (allerdings kleine absolute Mengen) festgestellt. Diese klar unterschiedlichen chemischen Eigenschaften lassen sich durch Wurzelaktivitäten und den Transport von gelösten Substanzen (darunter auch DOC: gelöster organischer Kohlenstoff) durch präferentielle Fließwege erklären. Während des Transports ist die Kontaktzeit zwischen dem DOC und dem Boden verkürzt, so dass der Kohlenstoff in tiefere Bodenhorizonte transportiert wird, in denen er eventuell organo-mineralische Komplexe bilden kann. Dies würde bedeuten, dass präferentieller Fluss unter Umständen die Kohlenstoff-Sequestration im Unterboden begünstigen könnte, und nicht nur seine unmittelbare Umgebung, sondern auch die tiefer liegenden Bodenhorizonte beeinflusst. Ein wichtiges Ergebnis dieser Untersuchungen ist die große Anzahl an Bildern der Fließmuster in verschiedenen Böden. In nachfolgenden Arbeiten könnte mit den neuesten Methoden der Reduktion der Dimension untersucht werden, ob diesen Bildern eine niedrigdimensionale Struktur zugrunde liegt
30

Transport von Wasser, Soluten und Dispersionen in wasserungesättigtem Sand / Transport of water, solutes and dispersions in unsaturated sand

Gernandt, Peter 22 May 2003 (has links)
No description available.

Page generated in 0.0641 seconds