Spelling suggestions: "subject:"preservation off organs"" "subject:"preservation oof organs""
1 |
Development and evaluation of cryopreservation techniques for bovine embryosPrather, Randall Scott. January 1984 (has links)
Call number: LD2668 .T4 1984 P72 / Master of Science
|
2 |
An analysis of the heat and mass transport during the freezing of biomaterials.O'Callaghan, Michael Gregory January 1979 (has links)
Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering ,1979. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING. / Vita. / Includes bibliographical references. / Ph.D.
|
3 |
Insulin in UW solution exacerbates the ischemia/reperfusion injury in rat liver transplantationLi, Xianliang, 李先亮 January 2003 (has links)
published_or_final_version / abstract / toc / Surgery / Doctoral / Doctor of Philosophy
|
4 |
Microscopic postmortem changes in kidneys and adrenal glands of the domestic fowlAlejandro, Veronica S. J January 2011 (has links)
Typescript (photocopy). / Digitized by Kansas Correctional Industries
|
5 |
A study of the effects of warm ischaemic times on harvested homograftsBester, Dreyer 03 1900 (has links)
Thesis (M. Tech.) -- Central University of Technology, Free State, 2009
|
6 |
Análise da ultra-estrutura do tecido paratireóideo humano em solução para preservação de tecidos / Analysis of the ultrastructure of human parathyroid in solution for preservation of tissueBarreira, Carlos Eduardo Santa Ritta 30 April 2010 (has links)
INTRODUÇÃO: A criopreservação de tecido paratireóideo é empregada no tratamento cirúrgico do hiperparatireoidismo secundário nos pacientes com doença renal crônica. Entre a captação do tecido e a criopreservação, realizada em laboratório especializado, o tecido é preservado em solução para cultura de células a 4°C (solução para transporte). Não há dados que demonstrem por quanto tempo o tecido paratireóideo humano pode permanecer viável nesta solução, antes de ser criopreservado. Este estudo objetiva avaliar o período de tempo que o tecido da glândula paratireóide hiperplásica de humanos pode permanecer na solução para transporte, sem apresentar danos ultra-estruturais. MÉTODOS: Estudo prospectivo que incluiu 11 pacientes submetidos a paratireoidectomia total com autoimplante heterotópico e criopreservação de fragmentos de tecido paratireóideo. Parte do tecido destinado para exame anatomopatológico foi selecionado para preservação em solução para transporte. Foram definidos 5 períodos relacionados ao tempo de permanência dos fragmentos de paratireóide na solução para transporte. No tempo 1, o material foi fixado a fresco, sem contato com a solução para transporte, este tempo serviu para controle. No tempo 2, os fragmentos de tecido permaneceram imersos na solução para transporte por 2 horas, no tempo 3, este período foi de 6 horas, e os tempos 4 e 5, corresponderam a preservação dos fragmento de paratireóide na solução para transporte por 12 e 24 horas respectivamente. Ao final de cada período os fragmentos foram removidos da solução de transporte e fixados com glutaraldeído a 2%, seguido por preparo do material para cortes ultrafinos. A análise por microscopia eletrônica avaliou a adesão celular e a integridade das membranas plasmáticas, dos núcleos e das mitocôndrias, além da presença de edema celular e de vacúolos. RESULTADOS: Dos 11 casos estudados, 10 apresentaram achados ultraestruturais compatíveis com a normalidade nos fragmentos de tecido que permaneceram na solução para transporte por até 12 horas. Em apenas um destes casos, houve preservação das características morfológicas do tecido por 24 horas, na solução para transporte. Em um caso os achados caracterizaram sinais de dano celular irreversível em todos os períodos, inclusive no tempo inicial, em que o tecido foi fixado a fresco, sem contato com a solução para transporte. As alterações das mitocôndrias representaram os danos ultra-estruturais mais constantes nos casos estudados. CONCLUSÃO: A análise da ultra-estrutura do tecido da glândula paratireoide hiperplásica de humanos permite concluir que ocorre manutenção adequada da integridade estrutural do tecido que permanece na solução com meio de cultura de células a 4°C.até cerca de 12 horas após sua retirada do organismo, na maioria dos casos. / BACKGROUND: The cryopreservation of parathyroid tissue is employed in the surgical treatment of secondary hyperparathyroidism in patients with chronic kidney disease. During the period between surgical resection and cryopreservation of tissue, which requires a specialized laboratory, the tissue is stored in a cell culture solution, at 4 °C (solution for transport from the operating room to the laboratory). There is no data showing for how long the human parathyroid tissue can remain viable in this solution, before being cryopreserved. The present study evaluates the time that the tissue of human hyperplastic parathyroid gland could remain in solution for transportation, without showing ultrastructural damages. METHODS: This prospective study included 11 patients, who underwent total parathyroidectomy with heterotopic autotransplantation and cryopreservation of parathyroid tissue fragments. Part of the tissue intended for pathological examination was selected for storage at solution for transportation. Five periods were defined, related to the storage time of parathyroid fragments at solution for transportation. At time 1, the material was fixed at the time of surgical resection, without contact with the solution for transport, this time was used as control. At time 2, the fragments of tissue remained stored at the solution for transportation for 2 hours, at time 3, this period was 6 hours, and Times 4 and 5, corresponded to the parathyroid fragments stored in the transport solution for 12 and 24 hours, respectively. At the end of each period the fragments were removed from the transport solution and fixed with 2% glutaraldehyde, followed by preparation of material for ultrathin sections. The analysis by electron microscopy was used to evaluate cell adhesion and integrity of plasma membranes, nuclei and mitochondria, and the presence of edema and cell vacuoles. RESULTS: Of the 11 cases studied, 10 showed ultrastructural findings consistent with the normal tissue fragments that remained in the solution to transport up to 12 hours. In only one of these cases, there was preservation of the morphological characteristics of the tissue for 24 hours, at the solution for transportation. In one case, there were findings of marked signs of irreversible cell damage in all periods, including the initial time in which the tissue was fixed at the time of surgical resection, without contact with the solution for transportation. Changes of mitochondria represented the ultrastructural damage more constant in the cases studied. CONCLUSION: The analysis of the ultrastructure of human hyperplastic parathyroid gland tissue shows that, in most cases, ultrastructural integrity is properly maintained in fragments stored up to 12 hours in a solution of cell culture, at 4° C.
|
7 |
Análise da ultra-estrutura do tecido paratireóideo humano em solução para preservação de tecidos / Analysis of the ultrastructure of human parathyroid in solution for preservation of tissueCarlos Eduardo Santa Ritta Barreira 30 April 2010 (has links)
INTRODUÇÃO: A criopreservação de tecido paratireóideo é empregada no tratamento cirúrgico do hiperparatireoidismo secundário nos pacientes com doença renal crônica. Entre a captação do tecido e a criopreservação, realizada em laboratório especializado, o tecido é preservado em solução para cultura de células a 4°C (solução para transporte). Não há dados que demonstrem por quanto tempo o tecido paratireóideo humano pode permanecer viável nesta solução, antes de ser criopreservado. Este estudo objetiva avaliar o período de tempo que o tecido da glândula paratireóide hiperplásica de humanos pode permanecer na solução para transporte, sem apresentar danos ultra-estruturais. MÉTODOS: Estudo prospectivo que incluiu 11 pacientes submetidos a paratireoidectomia total com autoimplante heterotópico e criopreservação de fragmentos de tecido paratireóideo. Parte do tecido destinado para exame anatomopatológico foi selecionado para preservação em solução para transporte. Foram definidos 5 períodos relacionados ao tempo de permanência dos fragmentos de paratireóide na solução para transporte. No tempo 1, o material foi fixado a fresco, sem contato com a solução para transporte, este tempo serviu para controle. No tempo 2, os fragmentos de tecido permaneceram imersos na solução para transporte por 2 horas, no tempo 3, este período foi de 6 horas, e os tempos 4 e 5, corresponderam a preservação dos fragmento de paratireóide na solução para transporte por 12 e 24 horas respectivamente. Ao final de cada período os fragmentos foram removidos da solução de transporte e fixados com glutaraldeído a 2%, seguido por preparo do material para cortes ultrafinos. A análise por microscopia eletrônica avaliou a adesão celular e a integridade das membranas plasmáticas, dos núcleos e das mitocôndrias, além da presença de edema celular e de vacúolos. RESULTADOS: Dos 11 casos estudados, 10 apresentaram achados ultraestruturais compatíveis com a normalidade nos fragmentos de tecido que permaneceram na solução para transporte por até 12 horas. Em apenas um destes casos, houve preservação das características morfológicas do tecido por 24 horas, na solução para transporte. Em um caso os achados caracterizaram sinais de dano celular irreversível em todos os períodos, inclusive no tempo inicial, em que o tecido foi fixado a fresco, sem contato com a solução para transporte. As alterações das mitocôndrias representaram os danos ultra-estruturais mais constantes nos casos estudados. CONCLUSÃO: A análise da ultra-estrutura do tecido da glândula paratireoide hiperplásica de humanos permite concluir que ocorre manutenção adequada da integridade estrutural do tecido que permanece na solução com meio de cultura de células a 4°C.até cerca de 12 horas após sua retirada do organismo, na maioria dos casos. / BACKGROUND: The cryopreservation of parathyroid tissue is employed in the surgical treatment of secondary hyperparathyroidism in patients with chronic kidney disease. During the period between surgical resection and cryopreservation of tissue, which requires a specialized laboratory, the tissue is stored in a cell culture solution, at 4 °C (solution for transport from the operating room to the laboratory). There is no data showing for how long the human parathyroid tissue can remain viable in this solution, before being cryopreserved. The present study evaluates the time that the tissue of human hyperplastic parathyroid gland could remain in solution for transportation, without showing ultrastructural damages. METHODS: This prospective study included 11 patients, who underwent total parathyroidectomy with heterotopic autotransplantation and cryopreservation of parathyroid tissue fragments. Part of the tissue intended for pathological examination was selected for storage at solution for transportation. Five periods were defined, related to the storage time of parathyroid fragments at solution for transportation. At time 1, the material was fixed at the time of surgical resection, without contact with the solution for transport, this time was used as control. At time 2, the fragments of tissue remained stored at the solution for transportation for 2 hours, at time 3, this period was 6 hours, and Times 4 and 5, corresponded to the parathyroid fragments stored in the transport solution for 12 and 24 hours, respectively. At the end of each period the fragments were removed from the transport solution and fixed with 2% glutaraldehyde, followed by preparation of material for ultrathin sections. The analysis by electron microscopy was used to evaluate cell adhesion and integrity of plasma membranes, nuclei and mitochondria, and the presence of edema and cell vacuoles. RESULTS: Of the 11 cases studied, 10 showed ultrastructural findings consistent with the normal tissue fragments that remained in the solution to transport up to 12 hours. In only one of these cases, there was preservation of the morphological characteristics of the tissue for 24 hours, at the solution for transportation. In one case, there were findings of marked signs of irreversible cell damage in all periods, including the initial time in which the tissue was fixed at the time of surgical resection, without contact with the solution for transportation. Changes of mitochondria represented the ultrastructural damage more constant in the cases studied. CONCLUSION: The analysis of the ultrastructure of human hyperplastic parathyroid gland tissue shows that, in most cases, ultrastructural integrity is properly maintained in fragments stored up to 12 hours in a solution of cell culture, at 4° C.
|
8 |
Cellular electrophysiological and mechanical effects of organ preservation solutions on endothelial function in resistance coronary and pulmonary arteries: implications in heart and lung transplantation.January 2006 (has links)
Wu Min. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2006. / Includes bibliographical references (leaves 87-114). / Abstracts in English and Chinese. / Declaration --- p.i / Acknowledgement --- p.ii / Publication list --- p.iii / Abstract (English) --- p.xi / Abstract (Chinese) --- p.xiv / Abbreviations --- p.xvi / List of figures / tables --- p.xviii / Chapter Chapter 1. --- General Introduction --- p.1 / Chapter 1.1 --- Endothelial function in the regulation of vascular tone --- p.1 / Chapter 1.1.1 --- NO --- p.2 / Chapter 1.1.2 --- PGI2 --- p.5 / Chapter 1.1.3 --- EDHF --- p.6 / Chapter 1.2 --- Alteration of endothelial functions after preservation with cardioplegia /organ preservation solutions in the coronary and pulmonary microcirculations --- p.18 / Chapter 1.2.1 --- Cardioplegia/organ preservation solutions --- p.21 / Chapter 1.2.2 --- Effect of Cardioplegia/organ preservation solutions on endothelial function --- p.22 / Chapter 1.2.2.1 --- Effect of K+ on endothelial function --- p.23 / Chapter 1.2.2.2 --- Effect of other components on endothelial function --- p.24 / Chapter Chapter 2. --- Materials and Methods --- p.26 / Chapter 2.1 --- Isometric force study in coronary/pulmonary resistance arteries --- p.26 / Chapter 2.1.1 --- Preparation of vessels --- p.26 / Chapter 2.1.1.1 --- Preparation of porcine coronary small arteries --- p.26 / Chapter 2.1.1.2 --- Preparation of porcine pulmonary small arteries --- p.26 / Chapter 2.1.2 --- Technique of setting up --- p.29 / Chapter 2.1.2.1 --- Mounting of small vessels --- p.29 / Chapter 2.1.2.2 --- Normalization procedure for small vessels --- p.29 / Chapter 2.1.3 --- EDHF-mediated vasorelaxation --- p.30 / Chapter 2.1.3.1 --- Precontraction and stimuli of EDHF --- p.30 / Chapter 2.1.3.2 --- """True"" response of EDHF" --- p.31 / Chapter 2.1.4 --- Data acquisition and analysis --- p.32 / Chapter 2.2 --- Electrophysiological study --- p.32 / Chapter 2.2.1 --- Preparation of small porcine coronary/pulmonary arteries --- p.32 / Chapter 2.2.2 --- Preparation of microelectrode --- p.32 / Chapter 2.2.3 --- Impaling of microelectrode --- p.33 / Chapter 2.2.4 --- Recording of membrane potential --- p.33 / Chapter 2.3 --- Statistical analysis --- p.34 / Chapter 2.4 --- Chemicals --- p.34 / Chapter Chapter 3. --- Effects of Celsior Solution on Endothelial Function in Resistance Coronary Arteries Compared to St. Thomas' Hospital Solution --- p.37 / Chapter 3.1 --- Abstract --- p.37 / Chapter 3.2 --- Introduction --- p.38 / Chapter 3.3 --- Experimental design and analysis --- p.40 / Chapter 3.3.1 --- Vessel preparation --- p.40 / Chapter 3.3.2 --- Normalization --- p.40 / Chapter 3:3.3 --- "Relaxation study: BK-induced, EDHF-mediated relaxation" --- p.41 / Chapter 3.3.4 --- Cellular electrophysiological study: EDHF-mediated cellular hyperpolarization and associated relaxation --- p.41 / Chapter 3.3.5 --- Data analysis --- p.42 / Chapter 3.4 --- Results --- p.43 / Chapter 3.4.1 --- Relaxation study --- p.43 / Chapter 3.4.1.1 --- Resting force --- p.43 / Chapter 3.4.1.2 --- U46619-induced precontraction --- p.43 / Chapter 3.4.1.3 --- EDHF-mediated relaxation --- p.43 / Chapter 3.4.2 --- Electrophysiological studies --- p.44 / Chapter 3.4.2.1 --- Resting membrane potential --- p.44 / Chapter 3.4.2.2 --- EDHF-mediated cellular hyperpolarization --- p.45 / Chapter 3.4.2.3 --- Cellular hyperpolarization-associated relaxation --- p.45 / Chapter 3.5 --- Discussion --- p.46 / Chapter 3.5.1 --- Effects of Celsior solution on endothelial function --- p.47 / Chapter 3.5.2 --- Effects of ST solution on EDHF-mediated function --- p.48 / Chapter 3.5.3 --- Comparison between Celsior and ST solutions on EDHF-mediated function --- p.48 / Chapter 3.5.4 --- Clinical implications --- p.49 / Chapter Chapter 4. --- Effects of Perfadex and Celsior Solution on Endothelial Function in Resistance Pulmonary Arteries --- p.57 / Chapter 4.1 --- Abstract --- p.57 / Chapter 4.2 --- Introduction --- p.58 / Chapter 4.3 --- Experimental design and analysis --- p.59 / Chapter 4.3.1 --- Vessel Preparation --- p.59 / Chapter 4.3.2 --- Normalization --- p.60 / Chapter 4.3.3 --- Isometric force study --- p.60 / Chapter 4.3.4 --- Electrophysiological studies --- p.61 / Chapter 4.3.5 --- Data analysis --- p.61 / Chapter 4.4 --- Results --- p.62 / Chapter 4.4.1 --- Relaxation study: EDHF-mediated relaxation --- p.62 / Chapter 4.4.1.1 --- Resting force --- p.62 / Chapter 4.4.1.2 --- U46619-induced precontraction --- p.62 / Chapter 4.4.1.3 --- EDHF-mediated relaxation --- p.62 / Chapter 4.4.2 --- Electrophysiological studies --- p.63 / Chapter 4.4.2.1 --- Resting membrane potential --- p.63 / Chapter 4.4.2.2 --- EDHF-mediated cellular hyperpolarization --- p.64 / Chapter 4.4.2.3 --- Cellular hyperpolarization-associated relaxation --- p.64 / Chapter 4.5 --- Discussion --- p.65 / Chapter 4.5.1 --- Effects of Celsior solution on endothelial function during cardiopulmonary surgery --- p.65 / Chapter 4.5.2 --- Effects of Perfadex solution on EDHF-mediated endothelial function --- p.66 / Chapter 4.5.3 --- Comparison between Celsior and Perfadex solutions on EDHF-mediated function --- p.66 / Chapter 4.5.4 --- Clinical implications --- p.67 / Chapter Chapter 5. --- Exploration of the Nature of EDHF - the Effect of H2O2 on the Membrane Potential in the Rat Small Mesenteric Arteries --- p.73 / Chapter Chapter 6. --- General Discussion --- p.75 / Chapter 6.1 --- EDHF-mediated endothelial function in porcine coronary and pulmonary circulation --- p.75 / Chapter 6.1.1 --- Role of EDHF in the regulation of porcine coronary arterial tone --- p.75 / Chapter 6.1.2 --- Role of EDHF in the regulation of porcine pulmonary arterial tone --- p.76 / Chapter 6.2 --- Alteration of EDHF-mediated endothelial functions after exposure to organ preservation solutions --- p.77 / Chapter 6.2.1 --- Effects of hyperkalemic solution on EDHF-mediated endothelial function in coronary and pulmonary circulation --- p.78 / Chapter 6.2.2 --- Effects of low-potassium-based preservation solution on EDHF-mediated endothelial function in pulmonary circulation --- p.79 / Chapter 6.2.3 --- Comparison between hyperkalemic solution and low-potassium-based preservation solution on EDHF-mediated endothelial function --- p.80 / Chapter 6.2.4 --- Effects of other component of organ preservation solutions on EDHF-mediated endothelial function --- p.81 / Chapter 6.3 --- Clinical implications --- p.82 / Chapter 6.4 --- The effect of H202 on the membrane potential in rat small mesenteric arteries --- p.83 / Chapter 6.5 --- Limitation of the study --- p.84 / Chapter 6.6 --- Future investigations --- p.85 / Chapter 6.7 --- Conclusions --- p.85 / References --- p.87
|
Page generated in 0.1387 seconds