• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 38
  • 7
  • 4
  • 1
  • 1
  • Tagged with
  • 65
  • 65
  • 20
  • 19
  • 14
  • 12
  • 9
  • 8
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Phase inversion in the process for making tackifier dispersions used in pressure sensitive adhesives

Song, Daoyun. January 1900 (has links)
Thesis (Ph. D.)--West Virginia University, 2008. / Title from document title page. Document formatted into pages; contains xv, 188 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 172-182).
2

Lifetime measurements on pressure sensitive paints : temperature correction, effects of environment, and trials on new luminescent materials /

Coyle, Lisa M., January 1999 (has links)
Thesis (Ph. D.)--University of Washington, 1999. / Vita. Includes bibliographical references (leaves 156-161).
3

The interactions of pressure sensitive adhesive with paper surfaces

Zhao, Boxin. Pelton, Robert H. January 2004 (has links)
Thesis (Ph.D.)--McMaster University, 2004. / Supervisor: Robert Pelton. Includes bibliographical references.
4

Pressure Sensitive Paint Suitable to High Knudsen Number Regime

Mori, Hideo, Niimi, Tomohide, Hirako, Madoka, Uenishi, Hiroyuki January 2006 (has links)
No description available.
5

A thin film oxygen sensor for the study of insect flight /

McGraw, Christina M. January 2004 (has links)
Thesis (Ph. D.)--University of Washington, 2004. / Vita. Includes bibliographical references (leaves 185-189).
6

Conjugated Linoleic Acid/Styrene/Butyl Acrylate Bulk and Emulsion Polymerization

Roberge, Stéphane January 2016 (has links)
The potential for conjugated linoleic acid (CLA) incorporation into pressure-sensitive adhesive (PSA) formulations was evaluated. A series of free radical bulk copolymerizations of CLA/styrene (Sty) and CLA/butyl acrylate (BA) were designed to allow the estimation of reactivity ratios. Bulk terpolymerizations of CLA/Sty/BA were also evaluated before moving to emulsion terpolymerizations of CLA/Sty/BA. The polymers were characterized for composition, conversion, molecular weight and glass transition temperature while latexes were characterized for viscosity, particle size, tack, peel strength, and shear strength. All experiments were performed at 80oC and monitored with attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy. While bulk experiments were monitored off-line, the emulsion experiments were monitored in-line. Absorbance peaks related to the monomers and polymer were tracked to provide conversion and polymer composition data using a multivariate calibration method. Off-line measurements using gravimetry and 1H-NMR spectroscopy were compared to the ATR-FTIR data and no significant differences were detected between the measurement methods. Pseudo-kinetic models, developed and validated with the copolymer experimental data, were used to estimate reactivity ratios. The copolymer pseudo-kinetic models were extended to a terpolymer pseudo-kinetic model and validated with experimental data. The pseudo-kinetic models incorporated the ability of oleic acid, a common impurity found in CLA, to trap electrons thus influencing the reaction kinetics significantly. The influence of terpolymer composition, chain transfer agent concentration, cross-linker concentration, molecular weight, viscosity and particle size on tack, peel strength and shear strength was investigated by using a constrained mixture design. The final forms of the resulting empirical models allowed the creation of 3D response surfaces for PSA performance optimization. The incorporation of 30 wt.% CLA into a practical PSA application suitable for the removable adhesives category was achieved.
7

Testing and Analysis of the Peeling of Medical Adhesives From Human Skin

Karwoski, Alicia Corrine 27 June 2003 (has links)
The analysis of peeling tape or a bandage from skin is a challenging problem. Skin is a very complex material made of many layers with anisotropic material properties. Adhesives that bond tapes or patches to skin must attach to skin through moisture and skin movement, but then be removed with little skin trauma. A computer model of peeling from skin apparently has not been developed previously. With experiments and the application of mechanics, research was conducted to analyze adhesion to skin. Numerous peeling experiments were performed on human subject arms using 2.54-cm-wide pressure sensitive tape Durapore™ by 3M. Various rates, angles, and dwell times were tested. Testing machines recorded peel force and the displacement of the end of the tape. A range of maximum and average peeling force values were noted for human subjects, along with the influence of angle, rate, order of testing, dwell time, and subject. Also, rigid substrates were tested for comparison with human skin. Computer models were also developed to simulate peeling and skin behavior. Initial models dealt with peeling from a rigid surface, and intermediate models concerned plucking skin. The final model involved peeling a piece of tape from skin, the overall goal of this research. The skin and tape were modeled as they behave during peeling. With the final model, the peel angle, debonding moment, normal force on the skin, and net shear force tangential to the skin were analyzed. Results from the experiments and computer models of this research will increase knowledge of skin behavior and could contribute to improvements in the design of adhesives that contact the skin. / Master of Science
8

The Use of Lignin in Pressure Sensitive Adhesives and Starch-Based Adhesives

Nasiri, Anahita 19 November 2019 (has links)
After cellulose, lignin is the second most abundant natural polymer in the world. It has multiple functional groups, providing great potential for polymer production. In this project, we explored the use of this renewable and valuable resource in two different adhesive applications to displace petroleum-based additives, thereby providing a more sustainable and “green” product. In this regard, two types of lignin, water-soluble (Amalin LPH) and non-water-soluble lignin (Amalin HPH) provided by the British Columbia Research Institute (BCRI) were used. In the first case, lignin was added to a pressure-sensitive adhesive (PSA) formulation via in-situ seeded semi-batch emulsion polymerization. It was seen that lignin does not readily take part in the polymerization reaction; rather, its presence results in reaction inhibition. Therefore, Amalin LPH lignin was modified via acrylation to overcome this issue. In another modification approach, maleic anhydride was used to produce maleated Amalin HPH lignin. Both the acrylated and maleated lignins were used in butyl acrylate/methyl methacrylate emulsion copolymerizations to produce PSA films. A series of controlled experiments with different lignin loadings was conducted. Adhesive properties of the PSA films were measured and compared with the corresponding acrylic base case formulation. The incorporation of lignin in the PSA formulation was a “green” solution to conventional PSA production and led to a simultaneous increase in tack and shear strength. Further characterization of the latex films via transmission electron microscopy (TEM) showed that lignin was successfully incorporated into the polymer particles. It also showed that the use of maleated lignin at a higher concentration led to a core-shell morphology. In the second application, unmodified Amalin LPH lignin was used to create a starch-based adhesive through the Stein-Hall process, a two-step process involving a “carrier” portion and a “slurry” portion. Several formulations with lignin loadings up to 35 wt% distributed in varying ratios in the carrier and slurry portions were prepared. It was shown that the addition of lignin to the starch-based adhesive formulation increases the water-resistance of the adhesive. Therefore, lignin addition is a solution for a common issue in starch-based adhesives, their lack of water-resistance due to the high affinity of starch toward water. Lignin incorporation solely in the slurry portion significantly increased the strength of the glued joints in a paper board adhesive test. The use of lignin as a renewable replacement of petroleum-based components in two different adhesive formulations was demonstrated successfully. This research strongly suggests that lignin can be used as a high value-added property modifier in adhesive applications.
9

Experimental investigation of film cooling effectiveness on gas turbine blades

Gao, Zhihong 15 May 2009 (has links)
The hot gas temperature in gas turbine engines is far above the permissible metal temperatures. Advanced cooling technologies must be applied to cool the blades, so they can withstand the extreme conditions. Film cooling is widely used in modern high temperature and high pressure blades as an active cooling scheme. In this study, the film cooling effectiveness in different regions of gas turbine blades was investigated with various film hole/slot configurations and mainstream flow conditions. The study consisted of four parts: 1) effect of upstream wake on blade surface film cooling, 2) effect of upstream vortex on platform purge flow cooling, 3) influence of hole shape and angle on leading edge film cooling and 4) slot film cooling on trailing edge. Pressure sensitive paint (PSP) technique was used to get the conduction-free film cooling effectiveness distribution. For the blade surface film cooling, the effectiveness from axial shaped holes and compound angle shaped holes were examined. Results showed that the compound angle shaped holes offer better film effectiveness than the axial shaped holes. The upstream stationary wakes have detrimental effect on film effectiveness in certain wake rod phase positions. For platform purge flow cooling, the stator-rotor gap was simulated by a typical labyrinth-like seal. Delta wings were used to generate vortex and modeled the passage vortex generated by the upstream vanes. Results showed that the upstream vortex reduces the film cooling effectiveness on the platform. For the leading edge film cooling, two film cooling designs, each with four film cooling hole configurations, were investigated. Results showed that the shaped holes provide higher film cooling effectiveness than the cylindrical holes at higher average blowing ratios. In the same range of average blowing ratio, the radial angle holes produce better effectiveness than the compound angle holes. The seven-row design results in much higher effectiveness than the three-row design. For the trailing edge slot cooling, the effect of slot lip thickness on film effectiveness under the two mainstream conditions was investigated. Results showed thinner lips offer higher effectiveness. The film effectiveness on the slots reduces when the incoming mainstream boundary layer thickness decreases.
10

Determination of Polymer Film Development through Surface Characterization Studies

Fike, Gregory Michael 01 April 2005 (has links)
Unexpectedly, it was found that when a waterborne polyacrylate adhesive was placed on carbon steel it was not tacky; this was not the case for the same adhesive placed on stainless steel. It was determined that the surface energy, as measured with liquid contact angles, of the adhesive films is significantly different between the two films, with the non-tacky film having a higher surface energy. Atomic force microscopy (AFM) showed that the non-tacky surface has a higher roughness which minimizes the contacting area between the film and a contacting surface. Analysis of the heating of the carbon steel coupon with infrared thermography shows a non-uniform temperature profile at the surface. This experimental data is corroborated using a 2-D heat transfer model that incorporates the heat transfer characteristics of the various components of carbon steel. Surface driven flow, or Marangoni convection, can develop from temperature gradients and are known to cause increased roughness in polymer films. IR thermography measurements of the adhesive film during drying shows larger temperature differences for the films on carbon steel than on stainless steel. These larger temperature differences induce greater Marangoni convection, which result in the rougher surfaces on carbon steel that were measured with AFM. The effect of lowering the tack of a polyacrylate film has significant impact in the dryer section of a paper machine. This effect was quantified using the Web Adhesion Drying Simulator, which is a laboratory-scale apparatus that measures the energy required to pull the sheet from a metal surface. By substituting the adhesive-on-stainless steel with the less-sticky adhesive-on-carbon steel surface, the energy required to pull the sheet from the metal surface was reduced significantly and the picking associated with the test was nearly eliminated.

Page generated in 0.0727 seconds