Spelling suggestions: "subject:"aprimary conergy consumption"" "subject:"aprimary conergy deconsumption""
1 |
Economic, Environmental, and Energetic Performance Analysis of a Solar Powered Organi Rankine Cycle (ORC)Spayde, Emily Diane 08 December 2017 (has links)
In this dissertation, different configurations of solar powered organic Rankine cycles (ORC) are investigated. The configurations include: a basic ORC, a regenerative ORC (R-ORC), and a basic ORC with electric energy storage (EES) (ORC-EES). The basic ORC and the R-ORC are evaluated using different dry organic fluids based on the first and second laws of thermodynamics and electricity production. The performance of both ORC systems is based on the potential for primary energy consumption (PEC) and carbon dioxide emission (CDE) savings, the electricity production, and the available capital cost (ACC) for the system. The R-ORC and basic ORC are both evaluated in Jackson, MS and Tucson, AZ to determine the effect of hourly solar irradiation and ambient temperature on both systems. For the basic ORC a parametric analysis is performed to determine the effects of cycle pressure, temperature, solar collector area, and turbine efficiency on the system performance. Similarly, for the R-ORC, a parametric analysis investigating the effect of open feed organic fluid heater intermediate pressure and turbine efficiency on the R-ORC is performed. Finally an ORC connected to an EES device located in Tucson, AZ is studied. The ORC-EES supplies electricity to three different commercial buildings. The ORC-EES is modeled to be charging when irradiation is available and discharging when there is not enough irradiation to generate electricity from the ORC. The performance of the system is based on the amount of electricity supplied, the potential for PEC, CDE, and cost savings, and the ACC. The effect of solar collector area on the percentage of supplied electricity, EES device size, and cost savings is also studied. It was determined that all the evaluated ORC configurations have the potential to produce PEC, CDE, and cost savings, but their performance is affected by the organic working fluid, solar collector area, and the location where the system is installed.
|
2 |
Investigation on solar powered organic Rankine cycle with energy storage, economic and environmental benefits at different climate zones in various buildings types in the United States of AmericaHemmati, Hadis 25 November 2020 (has links)
This study investigates the potential of installing an integrated solar powered Organic Rankine Cycle (ORC) with electric energy storage (EES) to provide clean energy to commercial buildings in different climate zones in the US. Reducing the primary energy consumption (PEC), lowering the carbon dioxide emissions (CDE) and increasing the operational cost savings are primary objectives. Firstly, a large office building for eight US climates is studied. The EES is sized to store all the electricity generated by the system. Secondly, the system is studied for sixteen different commercial buildings, in the best climate zone, by considering two operational strategies. Finally, the influence of variable expander efficiency on the system performance is investigated. Results indicate that Phoenix is the best location in the US, among the evaluated locations, to install the ORC-EES. The model for the full-service restaurant shows higher savings and more electricity supply percentage than the other buildings. The model under the variable expander efficiency lowers the yearly PEC by 1.6% and CDE and operational cost savings both by 11%.
|
3 |
CO2 capture in industry using chilled ammonia process / CO2-fångst i industrin med kyld ammoniakprocessAmara, Soumia January 2021 (has links)
CO2 capture and storage (CCS) is estimated to reduce 14% of the global CO2 emissions in the 2 °C scenario presented by the International Energy Agency. Moreover, post combustion capture is identified as a potential method for CO2 capture from industry since it can be easily retrofitted without disturbing the core industrial process. Among the post-combustion capture methods, absorption using mono-ethanol amine (MEA) is the most mature technology that has been demonstrated at plant scale. However, using chilled ammonia process as a post combustion capture technology in a cement industry can reduce 47% energy penalty for CO2 capture when compared to the conventional MEA absorption method. Hence, the current project aims at analyzing the chilled ammonia process when integrated with steel and ammonia plants. Key performance indicator like specific primary energy consumption per kilogram of CO2 avoided (SPECCA) is estimated and compared with MEA absorption method. Firstly, chilled ammonia process (CAP) for cement plant was used as reference case. Then, CAP for steel and ammonia processes was optimized by the means of the decision variables affecting the capture and energy efficiency. The energy consumption per kg CO2 captured and SPECCA was lower for the higher CO2 concentration in the flue gas. Results for SPECCA were 3,56, 3,52 and 3,61 MJ/kg CO2 for cement, steel, and ammonia plants, respectively.
|
4 |
Data-driven retrofitting strategy for buildings in Minneberg, StockholmNOHRA, MARC January 2020 (has links)
Complying with the Paris agreements requires substantial efforts in the building sector, and especially within the existing building stock which is responsible for a considerable amount of emissions and energy consumption. This master thesis focuses on the residential district of Minneberg, located in the west of Stockholm in Bromma. The urban building energy modelling (UBEM) approach is used to model the situation of the current district. This method uses real-life data provided by the district, as well as information found in energy performance certificates and in public databases. Based on that, a virtual archetype building representing the whole district is modelled and calibrated. Suitable energy-efficient solutions that can contribute to reducing the energy consumption are identified and applied in two different scenarios. The first scenario consists in retrofitting the current building stock, while the second represents the case where the building has to be designed from scratch today to comply with Boverket’s requirements on nearly zero-energy buildings ("New Minneberg" scenario). The aggregation of the results shows that the current district is already quite energy-efficient, with the installation of solar panels seeming to be the only economically viable retrofitting option. As for the "New Minneberg" scenario, it is possible to comply with the requirements and achieve a C-class building by reducing the primary energy consumption, but that comes at the expense of a higher actual energy consumption. / Att följa Parisavtalen kräver stora ansträngningar inom byggsektorn, och särskilt inom det befintliga byggnadsbeståndet som står för en betydande mängd växthusgasutsläpp och energianvändning. Examensarbetet fokuserar på det svenska bostadsområdet av Minneberg, som ligger i västra Stockholm i Bromma. UBEM-metoden (urban building energy modelling) används för att modellera situationen i det nuvarande distriktet. Metoden använder verkliga data från fastighetsområdet, liksom information som finns i energideklarationer och offentliga databaser. Därefter modelleras och kalibreras en virtuell arketypsbyggnad som representerar hela distriktet. Lämpliga energieffektiva lösningar som kan bidra till att minska energiförbrukningen identifieras och tillämpas i två olika scenarier. Det första scenariot består i renovering av det nuvarande byggnadsbeståndet, medan det andra representerar fallet om byggnaden hade designats från grunden idag, för att uppfylla Boverkets krav på nollenergihus ("New Minneberg" scenario). Resultaten visar att det nuvarande distriktet redan är ganska energieffektivt, där installation av solpaneler verkar vara den enda ekonomiskt lönsamma åtgärden. Gällande "New Minneberg" scenariot är det möjligt att uppfylla kraven och uppnå en C-klass byggnad genom att minska primärenergitalet, men det resulterar i en högre verklig energiförbrukning.
|
Page generated in 0.1162 seconds