Spelling suggestions: "subject:"aprimary biodiversity data"" "subject:"1primary biodiversity data""
1 |
Biodiversity occurences and patterns from the angle of systematics / Les occurrences et les tendances de la biodiversité sous l'angle de la systématiqueTroudet, Julien 29 November 2017 (has links)
Dans le contexte actuel de crise de biodiversité, il est primordial de comprendre où et comment se distribuent les êtres vivants. En utilisant les données de biodiversité gérées par le GBIF (> 640 millions d'occurrences) et couvrant 24 classes taxonomiques, j'ai étudié un patron de biodiversité remarquable, le gradient latitudinal de diversité (LDG). Cet objectif m'a d'abord amené à produire des outils informatiques afin de manipuler ces données de biodiversité (Big Data), puis à évaluer la qualité des données. J’ai alors mis en évidence deux phénomènes importants. Premièrement, un fort biais taxonomique existe dans les données d'occurrences de biodiversité. Certains taxons sont plus étudiés que d'autres, créant un déficit de connaissance pour certains groupes et se révélant problématique pour notre compréhension globale de la biodiversité. Ce biais semble s'expliquer en partie par l'impact des préférences sociétales. Deuxièmement, un changement radical dans la production de ces données: de plus en plus de données primaires de biodiversité sont de simples observations et non plus des spécimens récoltés et mis en collection. Les dangers et avantages liés à ce changement de pratique sont discutés, le rôle de spécimens vouchers est rappelé et la nécessité d'acquérir des données supplémentaires est soulignée. Enfin, fort de cette analyse critique des données primaires de biodiversité, six hypothèses pouvant expliquer le LDG sont testées sur un jeu de données nettoyées couvrant huit classes taxonomiques. Ce test permet de réfuter une hypothèse de contrainte géométrique récente mais jamais testée pour finalement révéler que l'hypothèse de productivité est la mieux soutenue. / In the current context of biodiversity crisis, it is essential to understand where and how life is distributed. Using biodiversity data managed by the GBIF (>640 million occurrences) covering 24 taxonomic classes, I investigated one of the best-known biodiversity patterns: the latitudinal diversity gradient (LDG), which is characterized by an increase in specific richness as we approach the equator. This objective first led me to produce informatics tools for handling large amount of data (Big data paradigm), before evaluating the quality of primary biodiversity data. Two important outcomes resulted from this evaluation. First, I highlight that a strong taxonomic bias exists in biodiversity occurrences. This bias implies that some taxa are more studied than others, creating a knowledge gap detrimental to our understanding of biodiversity as a whole. This bias is strongly impacted by societal preferences rather than research activity. Second, a radical change in biodiversity data gathering practices is happening: primary biodiversity data are now mostly observation-based and not specimen-based. Assets and liabilities of this shift are discussed, while the role of voucher specimens is reiterated and, for observations, the need for ancillary data is underlined. Finally, six hypotheses proposed to explain the LDG are tested on a cleaned dataset encompassing eight taxonomic classes. A recent, but never tested, version of the geometric constraint hypothesis is refuted, while the productivity hypothesis is strongly supported.
|
2 |
Limitations in Global Information on Species OccurrencesMeyer, Carsten 13 May 2015 (has links)
Detaillierte Informationen über die Verbreitungsareale von Arten sind essentiell für die Beantwortung zentraler Fragen der Ökologie, Evolutionsbiologie und Biogeographie. Solche Informationen sind auch notwendig, um Naturschutzressourcen kostenwirksam zwischen verschiedenen Regionen und Maßnahmen zu verteilen. Unser Wissen über Artverbreitungen beruht vor allem auf Punktdaten, die das Vorkommen einer bestimmten Art an einem bestimmten Ort zu einem bestimmten Zeitpunkt belegen (nachstehend „Records“). Riesige Mengen solcher Records wurden über internationale Data-Sharing-Netzwerke mobilisiert, allen voran durch die Global Biodiversity Information Facility (GBIF). Auch wenn diese Netzwerke die Zugänglichkeit zu solchen Informationen enorm verbessert haben, ist unser Wissen über globale Artverbreitungen immer noch äußerst lückenhaft und von grober räumlicher Auflösung – der sogenannte Wallace’sche Wissensrückstand. Vorhandene Informationen enthalten zudem zahlreiche Unsicherheiten, Fehler und Daten-‘Biases’. Diese könnten durch Ort-spezifische Faktoren wie Zugänglichkeit oder durch artspezifische Faktoren, wie Entdeckungswahrscheinlichkeit, verursacht werden. Zukünftiges Sammeln und Mobilisieren von Informationen sollte so gestaltet werden, dass der erreichte Nutzen der Records für Forschung und Naturschutz maximiert wird. Hierfür ist ein tiefgehendes Verständnis der Lücken, Unsicherheiten und Biases in den Informationen sowie der sie verursachenden Faktoren notwendig. Bisher wurden diese Mängel in globalen Artverbreitungsinformationen niemals quantitativ untersucht. Mit meiner Dissertation liefere ich die ersten globalen Analysen zu Mängeln von digital verfügbaren Verbreitungsinformationen für terrestrische Wirbeltiere und Landpflanzen.
Ich habe >300 Millionen Records für Landpflanzen und drei Gruppen terrestrischer Wirbeltiere (Amphibien, Säugetiere, Vögel) über GBIF abgerufen. Diese Informationen habe ich mit taxonomischen Datenbanken sowie unabhängigen Verbreitungskarten und Checklisten verbunden. Auf Grundlage der erstellten Datensätze habe ich unterschiedliche Formen von Informations-Mängeln für verschiedene taxonomische Gruppen und auf mehreren räumlichen Maßstäben untersucht. In Kapitel I habe Daten-Abdeckung sowie Daten-Unsicherheiten in Informationen zu Pflanzenvorkommen jeweils in Bezug auf Taxonomie, Raum und Zeit quantifiziert. Für diese insgesamt 6 Maße habe in anschließend Variation in den drei Dimensionen (Taxonomie, Raum, Zeit) gemessen. Zudem habe ich mithilfe von paarweisen Spearman-Rang-Korrelationen und Hauptkomponentenanalysen die Zusammenhänge zwischen diesen verschiedenen Formen von Informationsmängeln analysiert. In Kapitel II habe ich anhand von terrestrischen Wirbeltieren zwei spezielle Aspekte von Datenabdeckung zwischen geographischen Regionen verglichen: i) die Datendichte und ii) die Vollständigkeit der abgedeckten Arten. Durch Multi-Modell-Analysen habe ich die Effekte von zwölf potentiellen sozioökonomischen Einflussfaktoren auf Informationsmängel verglichen, und zwar einzeln für jede der drei Wirbeltiergruppen auf jeder von vier verschiedenen räumlichen Auflösungen. In Kapitel III habe ich anhand von Säugetieren drei Aspekte von Datenabdeckung zwischen einzelnen Arten verglichen: i) die Anzahl von Records pro Art, ii) die räumliche Abdeckung der Verbreitungsareale durch Records, und iii) den räumlichen Bias in der Abdeckung verschiedener Teile der Verbreitungsareale. Durch Multi-Modell-Analysen und Variations-Partitionierung habe ich die Effekte von verschiedenen Artmerkmalen, Größe und Form der Verbreitungsareale sowie von sozioökonomischen Faktoren untersucht. Diese Analysen habe ich auf globalem Maßstab sowie einzeln für sechs zoogeographische Gebiete durchgeführt.
In meiner Dissertation habe ich in allen untersuchten Aspekten von Artverbreitungsinformationen starke Biases gefunden. Die Anzahl von Records variierte um mehrere Größenordnungen zwischen Arten und zwischen geographischen Gebieten. Verschiedene Maße von Datenabdeckung und Datenunsicherheiten zeigten klare taxonomische, geographische und zeitliche Muster. Ich fand beispielsweise Höchstwerte von taxonomischer Abdeckung in industrialisierten westlichen Ländern, aber auch in einigen tropischen Gebieten wie Mexiko. Im Gegensatz dazu gab es in weiten Teilen Afrikas und Asiens entweder gar keine oder nur sehr veraltete Informationen. Da taxonomische, räumliche und zeitliche Abdeckung jeweils durch die Anzahl der Records numerisch eingeschränkt sind, fand ich zwischen diesen Maßen gemäßigte bis starke positive Korrelationen. Maße von Datenunsicherheiten hingegen korrelierten kaum untereinander oder mit Datenabdeckungsmaßen.
In Kapitel II habe ich den Einfluss von zwölf potentiellen sozioökonomischen Einflussfaktoren auf Datendichte und Datenvollständigkeit von geographischen Artgemeinschaften untersucht. Nur vier hatten einen durchweg für alle untersuchten Wirbeltiergruppen und räumlichen Auflösungen starken Einfluss. Dies waren der Endemitenreichtum, die räumliche Nähe zu Daten-beisteuernden Institutionen, politische Mitgliedschaft im GBIF-Netzwerk, sowie lokal verfügbare Forschungsgelder. Andere Faktoren, von denen man oft annimmt, dass sie eine große Rolle spielen würden, hatten einen erstaunlich geringen Einfluss, wie z.B. Verkehrsinfrastruktur oder Größe und Finanzausstattungen westlicher Daten-beisteuernder Institutionen. Meine Analysen in Kapitel III ergaben, dass die vier in Kapitel II identifizierten sozioökonomischen Schlüsselfaktoren ebenfalls einen starken Einfluss auf Artverbreitungsinformationen auf der Ebene von einzelnen Arten hatten. Jedoch unterschied sich ihre relative Wichtigkeit deutlich zwischen geographischen Gebieten. Zwischenartliche Unterschiede in Verbreitungsinformationen waren zudem sehr stark durch Größe und Form der Verbreitungsareale beeinflusst. Dies unterstützt meine Hypothese, dass diese geometrischen Faktoren die Wahrscheinlichkeit beeinflussen, dass sich Verbreitungsgebiete bestimmter Arten mit Untersuchungsgebieten von Feldforschern überschneiden, was wiederum Aufswirkungen auf die Wahrscheinlichkeiten hat, mit denen diese Arten besammelt werden. Entgegen unserer Annahmen hatten Artmerkmale wie etwa Nachtaktivität, die das Entdecken oder Sammeln bestimmter Arten wahrscheinlich machen sollten, kaum einen Einfluss auf zwischenartliche Unterschiede in Verbreitungsinformationen.
Die Ergebnisse meiner Dissertation lassen wichtige Schlussfolgerungen darüber zu, wie mobilisierte Artverbreitungsinformationen effizient genutzt und verbessert werden können. Erstens belegen meine Ergebnisse schwerwiegende Mängel in digital verfügbaren Artverbreitungsinformationen, insbesondere für Gebiete und Arten von besonderer Wichtigkeit für den Naturschutz. Zweitens zeigen sie, dass für die allermeisten Arten feiner aufgelöste Informationen nur durch Artverbreitungsmodelle erreicht werden können, die mit geringen Datenmengen auskommen, die starke Datenunsicherheiten und Biases innehaben. Eine vielversprechende Methode, um in solchen Modellen mit Biases umzugeben, ist das explizite Einbeziehen der Bias-verursachenden Faktoren in die Modelle, und meine Ergebnisse bieten hilfreiche Anhaltspunkte für die Auswahl relevanter Faktoren. Drittens schaffen meine Ergebnisse eine empirische Grundlage zur Überwachung von Fortschritten in der Verbesserung weltweiter Artverbreitungsinformationen. Schließlich schafft mein Identifizieren der global wichtigsten Informations-limitierenden Faktoren sowie das Unterscheiden verschiedener Informationsaspekte eine Grundlage dafür, um Aktivitäten zu identifizieren, die Datenmängel effektiv beheben können. Als wichtigste Aktivitäten empfehle ich unter anderem i) das Unterstützen von Bemühungen zur Datenmobilisierung in Institutionen, die in geographischer Nähe zu datenarmen Gebieten liegen, ii) das Fördern von Kooperation zwischen großen Schwellenländern und Data-Sharing-Netzwerken, iii) die Durchführung von neuen Biodiversitäts-Surveys im zentralen Afrika und südlichen Asien, um weitgehend veraltete Informationen zu aktualisieren, und iv) das Verschieben des Fokus von Datensammel- und Datenmobilisierungsbemühungen auf Asien sowie Arten mit begrenzten Verbreitungsarealen.
|
Page generated in 0.0835 seconds