• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 173
  • 105
  • 41
  • 12
  • 9
  • 8
  • 4
  • 2
  • 2
  • 1
  • Tagged with
  • 430
  • 103
  • 62
  • 51
  • 50
  • 49
  • 48
  • 40
  • 37
  • 32
  • 29
  • 29
  • 28
  • 27
  • 26
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
351

Distribution, population status and conservation of the samango monkey (Cercopithecus albogularis schwarzi) in the Limpopo Province, South Africa

Linden, Birthe 02 1900 (has links)
PhD (Zoology) / Department of Zoology / A general introduction about the need for studying forest dwelling primate populations in fragmented landscapes and more specifically in the Soutpansberg is given in Chapter 1. Forests affected by fragmentation are at risk of losing primate populations over the long term. In addition, although the impact of fragmentation on primate populations has been studied in many places in Africa, Asia and South America there is no consensus of how the different primate species react to forest disturbance and fragmentation. This study aims to investigate the impacts of natural and anthropogenic forest fragmentation on the Soutpansberg samango monkey population including their distribution, genetics, and phylogeography, identifying threats and mitigation measures. To date, no detailed population level research has been undertaken on samango monkey populations in the far north of their South African distribution. By collecting a diverse data set, in addition to existing ecological data, this study generates conservation and management recommendations suited specifically to the study area and the study species and provides baseline data for future monitoring. Chapter 2 details how through creating an accurate forest distribution map and collecting samango monkey distribution records through surveys we were able to investigate how both natural and anthropogenic forest fragmentation influences the distribution of samango monkeys in the Soutpansberg. We explored forest patch occupancy and connectivity, determined the degree and nature of matrix utilisation and identified possible threats to forests and samango monkeys between the contrasting landscapes of the eastern and western Soutpansberg. Here we found that samango monkeys largely occupied forest patches <100 ha in size and that the Soutpansberg has very few forest patches > 100 ha available. We showed that samango monkeys used all components of the surrounding matrix and that lone or bachelor group males used the matrix more extensively than groups. We found that paved roads pose a major threat, however not a barrier, to samango monkey populations when navigating the matrix. Forest connectivity was found to be influenced by the distance between patches and possible corridors or stepping stones of isolated forest patches connecting them. Patterns found in this chapter contrasted between the eastern and western landscapes requiring different adaptive strategies from the samango monkeys and different conservation approaches from practitioners. In this chapter we conclude that samango monkeys, having evolved in fragmented landscapes, are comparatively tolerant and adaptable to a human- transformed matrix. In Chapter 3 we focused on the effects that natural and anthropogenic habitat fragmentation in the Soutpansberg has on the genetic diversity and structure of the samango monkey population in the mountain range. Here we used microsatellite and mitochondrial DNA data from faecal and tissue samples collected from four local samango monkey populations across the Soutpansberg. We also included samples from an outlying population on the escarpment south of the mountain, the most likely historical migration route into the Soutpansberg. Our analyses showed that the Soutpansberg population is divided across the mountain and that genetic diversity within the Soutpansberg decreases with increasing distance to the escarpment population and from east to west. We found a lack of contemporary gene flow suggesting that the Soutpansberg population is completely isolated from the closest source population in the escarpment and that populations within the mountain range are isolated from each other. Based on our results we suggest that extensive anthropogenic changes to the landscape in the eastern Soutpansberg and distance between high canopy forest patches in the western Soutpansberg appear to have reduced the ability of samango monkeys to disperse between sampling areas. Overall, we found that natural and anthropogenic fragmentation and geographical distance are potential drivers for the observed population genetic differentiation and that the matrix surrounding forests and its suitability for samango utilisation plays a role at the local scale. In this chapter we conclude that the degree of samango monkey population subdivision and the apparent lack of contemporary migration between populations raises concerns about the long-term viability of populations across the mountain range. Having identified road fatalities as the main direct anthropogenic threat samango monkeys are exposed to when utilizing the matrix, we further investigated this issue in more detail in Chapter 4. Here we aimed to get a better understanding of where roadkills most likely occur and how to mitigate these through using suitable canopy overpasses. As road fatalities threaten primate populations globally, we used the samango monkey (Cercopithecus albogularis) as a model species to test the suitability of two different canopy bridge designs through field experimentation and behavioural data collection for arboreal guenon roadkill mitigation. Analysis of actual roadkill data collected in the study area provided insights into the nature of high-risk localities. We showed that canopy overpasses are a viable intervention for mitigating arboreal guenon road fatalities, reducing the probability that monkeys will cross a road on the ground. Samango monkeys clearly preferred a pole bridge over a rope ladder design and canopy bridges were preferred to trees and the ground when the tree canopy was open. Pole bridges were also used by other non-guenon primates and non-primate species. We showed that although samango road kills were not predictable in time (no seasonality), adult female and immature fatalities were predictable in space, restricted to bisected riparian zones and roads close to intact forests. We further found that adult male road fatalities can be expected in seemingly unsuitable habitat areas. This chapter highlights the importance of the correct interpretation of spatial, temporal and demographic data on road fatalities and how experimental research prior to installing crossing structures could increase mitigation impact. In Chapter 5 we investigate the regional phylogeography of samango monkeys, providing a deeper understanding into their evolutionary history in repeatedly fragmented forest habitat due to paleoclimatic fluctuations. Here we used mtDNA and microsatellite data obtained from tissue samples from a coastal population (Vamizi Island) in Mozambique and compared this to existing data from South Africa. The additional analysis of Mozambique animals allowed us to further test the number and timing of radiation events of Cercopithecus monkeys in southern Africa. In this chapter we propose the occurrence of a single, north-south radiation event during the midPleistocene along the Afromontane forest belt and that after the Last Glacial Maximum, samango populations re-radiated into (re)established coastal forests on a more local scale. Taking the findings from all chapters together we provide overall conclusions and conservation and management recommendations in Chapter 6. Here we also include interview data to give insights into public perceptions of samango monkeys and possible human-primate conflicts as we consider this an important aspect of conservation planning. In this final chapter we conclude that although samango monkeys appear comparatively adaptable to changes in the matrix surrounding their forest habitat, direct threats and forest patch isolation by distance may pose risks to populations in future. We advocate that conservation and management strategies aimed at the longterm persistence of the samango monkey populations and their forest habitat across the Soutpansberg should be formulated separately for the eastern and western parts of the mountain range as differing landscape variables pose different threats to forest and samango monkeys, thus requiring separate conservation and management approaches. We further recommend explicit mention of distinct management requirements for maternal groups and lone or bachelor group males to achieve a holistic conservation approach for samango monkey populations on the landscape scale. Findings of our study are not only relevant for samango monkey populations in the Soutpansberg but also for populations elsewhere in South Africa and southern Africa generally where forests and samango monkeys share the same paleohistory and current anthropogenic threats. / NRF
352

Atraktivita vzhledu jednotlivých druhů primátů a její důsledky / Human preferences to primate species and their consequences

Zelenková, Michaela January 2011 (has links)
One of the most important traits of an individual is the appearance. Though mankind desires to unlock the "beauty code" for centuries, it is very difficult to do so. A lot of papers focuses on the characterization of appearance and preferences towards it. It is now obvious that instead of using just one factor to describe the nature of "beauty", we need to comprehend a lot of factors that put together the puzzle pieces of an attractive individual. Nowadays, a widely accepted fact is that symmetry makes facial and other body features attractive. Other important factors are averageness or so-called baby schema with distinct young features. Similar rules apply for evaluation of preferences towards other, non-human species, especially primates. The most attractive primates have facial features that resemble humans or that are round with big, distinctive eyes (baby-schema). Thus, for humans, the most attractive primates are the ones that are similar to us and that are large in body size, while the unattractive ones have an appearance distinctive to humans. Moreover, humans distinguish two main primate faces: nice and friendly, baby-like faces, and aggressive, dangerous faces.
353

Application of next generation sequencing to the analysis of evolutionary changes in gene expression in primates: Application of next generation sequencing to the analysis of evolutionary changes in gene expression in primates

Dannemann, Michael 16 May 2014 (has links)
Understanding the evolutionary basis for human-specific phenotypes such as complex speech and language, advanced cognition or the unique preparation of their food is a topic of broad interest. Approaches focusing on comparisons of the genomic DNA (deoxyribonucleic acid) or RNA (ribonucleic acid) sequence between species, individuals or tissues allow for the identification of evolutionary sequence changes, some of these changes may underlie differences in phenotypes. In addition, differences in when, where and how much of a particular gene is present may also contribute to functional changes and therefore also to phenotypic differences. The resources to make such comparisons using genetic data are now available. The genome sequences of a number of outgroups: all living great apes, as well two archaic humans, are now publically available. Studying gene expression on the RNA level - a precursor of the protein expression - is considerably easier and cheaper than the measurement of expression of the protein itself. It has been shown that the RNA and protein expression levels are well correlated and therefore measuring RNA levels provides a good proxy for the expression of the protein. Using high-throughput sequencing techniques, relatively unbiased expression comparison is now possible because the RNA from any species can be sequenced directly, rather than being captured on arrays which are designed based on a particular reference sequence. The aim of this research was to use gene expression as a molecular phenotype to identify changes relevant to human-specific biology and study the difference between humans and their closest living relatives to understand patterns and differences in the gene expression and in gene expression regulation in multiple tissues in primates using high-throughput sequencing techniques. In my thesis, I describe two analyses to address open questions in the field of gene expression and genes expression regulation in humans. In the first part I will analyze how the effect of different diets impact gene expression using a mouse model. Two key components of the human diet that differ substantially from the diet of other primates, the frequent use of meat of many humans and the cooking of their food which is common for almost all human populations, are modeled in the experiment. I tested for their impact on liver gene expression. I found that both the differences in food substrates - meat and tuber - as well as in their preparation affect gene expression in mice significantly. The effect is bigger between food substrates than between methods of preparation. Differentially expressed genes between food substrates and food preparation were predominantly related to metabolic functions. In addition, immune-genes showed differential expression between the comparisons of raw meat to both, raw tuber and cooked meat, respectively. The results indicate that different food substrates and food preparations activate different metabolic pathways and that the cooking of food and particularly of meat has an influence on the immune also changes immune-reactions of the body. I showed that expression differences in these mice are correlated with the differences observed between humans and other primates, and that there is evidence that adaptation to these diets dates to more than 300.000 years. Finally, I showed that transcription factors play in important role in regulation of gene expression with respect to different food preparation. In the second part I analyzed the expression of one key regulator of gene expression: microRNAs (miRNAs). Using miRNA expression data from multiple primate species and for multiple tissues I found that expression differences vary between tissues. While heart and brain show only few expression differences between primates, other tissues are more variable in expression. The most extreme expression differences in all three primate species were found in the brain, which may reflect the importance of miRNAs in the regulation of gene expression in the brain. Expression differences in testis were significantly larger between humans and macaques than between chimpanzees and macaques, indicating that miRNAs evolved differently in human compared to chimpanzees. MiRNA expression differences were correlated with expression differences of their target genes genome-wide which underlines the regulatory importance of miRNAs. I also showed that differentially expressed miRNAs between species/tissues preferentially targeted transcription factors, which are important gene expression regulators as well. This finding that suggests complex regulatory pathways involving both miRNAs and transcription factors in the control of gene expression. Finally, I used the miRNA sequencing data to annotate new miRNAs in primates and was able to increase the number of annotated miRNAs substantially, especially for the non-human primates which were previously not extensively annotated. The overlap of miRNAs annotated in multiple primate species thereby also increased which will support future studies to investigate the evolutionary changes of miRNAs between these primates.
354

Alteration to Astrocyte Density and Morphology across Mammalia with Specific Attention to Primate Brain Evolution and Aging

Munger, Emily LaRee 14 July 2020 (has links)
No description available.
355

Salivary Biomarkers of Acute Stress and Insulin Sensitivity in Nonhuman Primates

Browning, Geoffrey Robinson 19 August 2013 (has links)
No description available.
356

Expression of fluctuating asymmetry in primate teeth: Analyzing the role of growth duration

Martin, Sarah Abigail 08 August 2013 (has links)
No description available.
357

Monkey see, monkey do? An intercultural exploration of the dynamics between humans and non-human primates in a professional animal research setting

Hannula, Gustaf 01 January 2007 (has links) (PDF)
This thesis is an exploration of the perceptions of a group of humans in interaction with a group of non-human primates in a professional animal research setting. The study is a novel investigation in the field of intercultural relations, exploring the values and beliefs of a group of research employees, and the intercultural competence and sensitivity these employees model in their interactions with the animals they work with. A focus group was conducted at the Oregon National Primate Research Center and 8 individuals working with non-human primates were interviewed. They were asked a series of 15 open-ended questions in order to explore their identification and appreciation of cultural differences, as well as their general strategies for adapting to cultural difference in the context of an animal research setting. The results of this meeting reflect a range of perceptions, attitudes, and beliefs relative to culture and the possibility of an intercultural relationship between species.
358

Alzheimer's disease pathology in aged chimpanzees

Edler, Melissa K. 26 July 2016 (has links)
No description available.
359

Sr Isotope Evidence for Population Movement Within the Hebridean Norse Community of NW Scotland

Montgomery, Janet, Evans, J.A., Neighbour, T. 09 June 2009 (has links)
No / The excavation at Cnip, Isle of Lewis, Scotland of the largest, and only known family cemetery from the early Norse period in the Hehrides, provided a unique opportunity to use Sr isotope analysis to examine the origins of people who may have been Norwegian Vikings. Sr isotope analysis permits direct investigation of a person's place of origin rather than indirectly through acquired cultural and artefactual affiliations. Sr isotope data suggest that the Norse group at Cnip was of mixed origins. The majority were consistent with indigenous origins but two individuals, of middle-age and different sex. were immigrants. They were, however, not from Norway but were raised separately, most probably on Tertiary volcanic rocks (e.g. the Inner Hebrides or NE Ireland) or, for the female, on marine carbonate rocks.
360

La collatéralisation axonale dans les ganglions de la base chez le primate

Parent, Martin 11 April 2018 (has links)
L'élucidation de la microcircuiterie liant les différentes composantes des ganglions de la base est d'une importance capitale afin d'améliorer notre compréhension de ce système neuronal hautement complexe impliqué notamment dans le contrôle de la motricité. C'est dans cette optique qu'ont été entrepris les travaux de recherche consolidés dans cet ouvrage qui rapporte des données neuroanatomiques nouvelles obtenues chez le singe cynomolgus {Macaca fascicularis) et le singe écureuil (Saimiri sciureus) à l'aide d'une technique de pointe permettant le marquage et la reconstruction tridimensionnelle complète de neurones individuels. L'injection par microiontophorèse d'un traceur antérograde, la biotine dextran aminé, dans le pallidum interne, le complexe centre médian/parafasciculaire du thalamus ainsi que le cortex moteur primaire, a permis de tracer en détail l'arborisation axonale des neurones composant ces structures. L'étude approfondie des neurones de projection du pallidum interne révèle que la majorité des axones pallidofuges sont fortement collatéralisés, un même neurone étant en mesure d'influencer à la fois le thalamus ventral, le complexe centre médian/parafasciculaire du thalamus ainsi que le noyau pédonculopontin du tegmentum mésencéphalique par le biais d'un jeu complexe de collatérales axonales. Il en est de même pour les neurones de projection du complexe thalamique centre médian/parafasciculaire dont le branchement axonal permet d'influencer individuellement et de façon variée, à la fois le cortex cérébral et le striatum. Nos travaux révèlent en plus que, contrairement à ce que l'on croyait, la projection corticostriée en provenance du cortex moteur primaire chez le primate n'est pas dédiée uniquement au striatum. En effet, la découverte de neurones corticaux projetant à la fois au striatum et vers le tronc cérébral via des collatérales axonales prouve que le cortex moteur primaire peut influencer le striatum de façon directe et indirecte. L'ensemble de ces résultats révèle que les ganglions de la base forment un réseau neuronal très vaste dont les éléments constitutifs possèdent un axone fortement collatéralisé. Ces données neuroanatomiques jettent un éclairage nouveau sur l'organisation anatomique et fonctionnelle des ganglions de la base chez le primate et doivent être prises en considération dans l'élaboration de nouvelles approches thérapeutiques visant à contrer les processus neurodégénératifs qui affectent les ganglions de la base, comme ceux associés aux maladies de Parkinson et de Huntington. / A better knowledge of the neural wiring that links the major components of the basai ganglia is essential to understand the complex spatiotemporel séquence of neural events that ensures the correct flow of cortical information through this set of subcortical structures involved in the control of motor behavior. The présent thesis reports novel neuroanatomical findings gathered in both Old World (cynomolgus; Macaca fascicularis) and New Word (squirrel monkey, Saimiri sciureus) primates using a state-of-the-art method allowing a complète labelling and three-dimension reconstruction of single neurons. Microiontophoretic injections of biotin dextran aminé, an anterograde neuronal tracer, in the internai pallidum, the centre médian/parafascicular thalamic complex and the primary motor cortex allowed a detailed description of projection neurons within thèse forebrain structures. Our data show that the majority of pallidal neurons are endowed with a highly collateralized axon that projects to the ventral tiers thalamic nuclei, the centre médian/parafascicular thalamic complex and the brainstem pedunculopontin tegmental nucleus. Our results also reveal that single centre médian or parafascicular neurons are able to influence in a multifarious fashion both the cérébral cortex and the striatum. Furthermore, we hâve shown that the corticostriatal projection arising from primary motor cortex is not dedicated solely to the striatum, in contrast to current belief. We found neurons that project to the striatum indirectly through a thin collatéral emitted by a thick long-range axon heading towards the brainstem, a finding that indicates that the primary motor cortex also has an indirect access to the primate striatum providing this structure with a copy of the neuronal information that is being sent to the brainstem and/or spinal cord. Altogether, thèse data indicate that the main components of basai ganglia in primates harbour différent types of projection neurons, each endowed with a highly collateralized axons. In the light of thèse findings, the basai ganglia can now be viewed as a widely distributed neuronal network, whose éléments are endowed with a highly patterned set of axon collaterals. The understanding of this finely tuned network is a prerequisite for the development of new therapeutic avenues for the treatment of basai ganglia disorders, such as Parkinson's disease and Huntington's chorea.

Page generated in 0.052 seconds