• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 48
  • 7
  • 7
  • 5
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 89
  • 89
  • 41
  • 28
  • 19
  • 18
  • 17
  • 14
  • 12
  • 11
  • 11
  • 11
  • 11
  • 11
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Reliability studies on printed conductors on flexible substrates under cyclic bending

Happonen, T. (Tuomas) 31 May 2016 (has links)
Abstract This thesis investigates the reliability of printed conductors on flexible substrates under cyclic bending. The topic is approached by studying the effects of several key design parameters on the bending lifetime of printed conductors under dynamic loading. In this thesis, the test specimens with various cross-sectional geometries were printed on different plastic and paper substrates. The test samples were fabricated with two printing methods, silk screen and roll-to-roll printing, by utilizing three different silver pastes as the conductive material. To evaluate the long-term performance of the printed traces, the test specimens were exposed to cyclic bending and their electrical behaviour during the test was monitored with resistance measurements. The bending test results were analysed by utilizing the Weibull analysis, with a 20% increase in resistance as the failure criterion. This method yielded a characteristic lifetime for a test population, including 10 individual test specimens. When comparing the characteristic lifetimes of all of the fabricated test populations, it was observed that all of the varied design parameters had an effect on the bending reliability of the printed traces. However, within the studied geometries and materials, the substrate was found to have the highest impact on the long-term electrical performance of printed conductors under cyclic bending. The study proves that the bending reliability of printed conductors can be enhanced by proper design choices. This is done by minimizing the strain when the printed trace is subjected to bending. / Tiivistelmä Tässä työssä tutkitaan joustaville substraateille painettujen johdinten luotettavuutta syklisessä taivutuksessa. Aihetta lähestytään tutkimalla useiden tärkeiden suunnitteluparametrien vaikutusta painettujen johdinten elinikään dynaamisessa rasituksessa. Työssä painettiin poikkileikkausgeometrialtaan vaihtelevia testirakenteita erilaisille muovi- ja paperisubstraateille. Testinäytteet valmistettiin käyttäen kahta painotekniikkaa, silkkipainoa ja rullalta rullalle painoa, hyödyntäen kolmea erilaista hopeapastaa johtavana materiaalina. Painettujen johdinten pitkäaikaisen suorituskyvyn arvioimiseksi testinäytteet altistettiin sykliselle taivutukselle ja niiden sähköistä käyttäytymistä monitoroitiin testin aikana resistanssimittauksilla. Taivutustestin tulokset analysoitiin Weibull analyysin avulla käyttäen 20%:n kasvua resistanssissa vikakriteerinä. Tämän menetelmän lopputuloksena saatiin karakteristinen elinikä testipopulaatiolle koostuen kymmenestä yksittäisestä testinäytteestä. Vertailtaessa kaikkien valmistettujen testipopulaatioiden karakteristisiä elinikiä, havaittiin kaikilla vaihdelluilla parametreilla olevan vaikutusta painettujen johdinten luotettavuuteen. Tästä huolimatta, tutkittujen geometrioiden ja materiaalien rajoissa, substraatilla todettiin olevan suurin vaikutus painettujen johdinten pitkä-aikaiseen sähköiseen suorituskykyyn syklisessä taivutuksessa. Tämä tutkimus osoittaa, että painettujen johdinten taivutusluotettavuutta voidaan parantaa oikeilla suunnitteluvalinnoilla. Tämä voidaan toteuttaa minimoimalla venymä painetun johtimen ollessa taivutuksessa.
32

Analysis of wetting and optical properties of materials developed for novel printed solar cells

Sliz, R. (Rafal) 24 June 2014 (has links)
Abstract Printed electronics offer unique possibilities for the development of devices and manufacturing methods. A prime example of printed electronics where the production volume can be significantly increased are solution-processed organic solar cells. Roll-to-roll (R2R) technology has made it possible to print solar cells almost as fast as newspaper. Unfortunately, the performance of printed devices depends strongly on film morphology, which is affected by the behaviour of the used ink on the confining surface - wetting. Key parameters that influence the wetting behaviour include surface energy, ink formulation, surface roughness, solvent properties, processing temperature and pre/post-treatments (heat, acid or plasma) and chemical heterogeneity. Importantly, a precise control of wetting and, consequently, film morphology is emphasized by many authors as an important factor for the commercialization of printed solar cells. This research focuses on measuring and analysing the influence of substrate processing temperature as well as plasma and UV pre-treatments on the wettability of various inks and substrates used in Organic Solar Cell (OSC) fabrication. It also explores the application of interesting novel materials, such as nanocellulose, in solar cell manufacture. The main tool applied here is the contact angle measurement method, since it is commonly used to obtain quantitative data describing the behaviour of ink droplets on substrate surfaces. Chief among the achieved results is the finding that the three factors mentioned above significantly influence ink-substrate interactions. Therefore, manipulation of plasma and UV treatments as well as substrate processing temperature, allow us to control wetting properties and, in consequence, the printing process. Another important result shows that the degree of control is strongly dependent on ink formulation and material composition and must, therefore, be taken into account in process development. These findings will contribute to a faster development of printed solar cells and their manufacturing conditions and requirements. / Tiivistelmä Painettava elektroniikka tarjoaa uusia mahdollisuuksia elektronisten laitteiden ja niiden valmistusmenetelmien kehittämiseen. Liuoskäsitellyt orgaaniset aurinkokennot ovat hyvä esimerkki painetun elektroniikan tuotteesta, jonka tuotantomäärää on voitu kasvattaa merkittävästi. Rullalta rullalle (engl. Roll-to-roll, R2R) -menetelmän avulla aurinkokennoja voidaan painaa lähes samalla nopeudella kuin sanomalehteä. Painettujen laitteiden suorituskyky riippuu suuresti tuotetun kalvon morfologiasta, johon vaikuttavat tuotantoprosessissa käytettyjen materiaalien kostumisominaisuudet. Tärkeimmät kostumiskäyttäytymiseen vaikuttavat parametrit ovat pintaenergia, pinnan karheus, musteen koostumus, liuotinominaisuudet, käsittelylämpötila, esi- ja jälkikäsittely (lämpö, happo tai plasma) sekä kemiallinen heterogeenisyys. Kostumisen, ja sitä kautta kalvon morfologian, tarkka säätely on tärkeää painettujen aurinkokennojen kaupallisen hyödyntämisen kannalta. Tässä väitöskirjatyössä mitataan ja analysoidaan käsittelylämpötilan sekä plasma- ja UV-esikäsittelyiden vaikutuksia orgaanisten aurinkokennojen valmistuksessa käytettyjen musteiden ja alustojen kostumisominaisuuksiin sekä tarkastellaan aurinkokennoliuoksissa käytettäviä uusia, mielenkiintoisia materiaaleja, kuten nanoselluloosaa. Työssä eniten hyödynnetty menetelmä on kontaktikulman mittaus, joka on yleisesti käytetty tapa hankkia kvantitatiivista tietoa mustepisaroiden käyttäytymisestä erilaisilla pinnoilla. Keskeisin saavutettu tutkimustulos on se, että kaikilla yllämainituilla kolmella käsittelyllä on huomattava merkitys musteen ja alustan vuorovaikutuksiin. Näin ollen plasma- ja UV-käsittelyillä sekä alustan käsittelylämpötilan säätelyllä voidaan hallita kostumisominaisuuksia ja sitä kautta koko painatusprosessia. Toinen tärkeä löydös on, että musteen koostumus ja alustan materiaali vaikuttavat siihen, kuinka voimakkaasti kostumista voidaan hallita. Näin ollen ne täytyy ottaa huomioon painatusprosessin suunnittelussa. Työssä saavutettuja tuloksia voidaan käyttää painettujen aurinkokennojen sekä niiden tuotantomenetelmien kehittämiseen.
33

Inkjet printing of carbon nanotubes for electronic applications

Mustonen, T. (Tero) 24 November 2009 (has links)
Abstract In this thesis, preparation of carbon nanotube (CNT) inks and inkjet printing of aqueous dispersions of CNTs for certain electrical applications are studied. The nanotube inks prepared in this work are based on chemically oxidized CNTs whose polar side groups enable dispersion in polar solvents. Subsequent centrifugation and decanting processes are used to obtain stable dispersions suitable for inkjet printing. The inks are based on either carboxyl functionalized multi-walled carbon nanotubes (MWCNTs), carboxyl functionalized single wall carbon nanotubes (SWCNTs) or SWCNT-polymer composites. The applicability of MWCNT inks is firstly demonstrated as printed patterns of tangled nanotube networks with print resolution up to ∼260 dpi and surface resistivity of ∼40 kΩ/□. which could be obtained using an ordinary inkjet office printer. In addition, MWCNT inks are found to exhibit spatial ordering in external magnetic fields due to entrapped iron catalyst nanoparticles in the inner-tubular cavity of the nanotubes. Ordering of nanotubes in the inks and in drying droplets placed in relatively weak magnetic fields (B ≤ 1 T) is demonstrated and studied. The high electrical conductivity and optical transparency properties of SWCNTs are utilized for enhancing the conductivity of transparent poly(3,4-ethylenedioxythiophene):poly(styrenesulphonate) (PEDOT:PSS) films. Polymer-nanotube composite materials are inkjet printed on flexible substrates. It is demonstrated that incorporation of SWCNTs in the thin polymer films significantly increases the electrical conductivity of the film without losing the high transparency (> 90%). The structure of composite films is studied using atomic force microscopy (AFM). The electronic properties of deposited random SWCNT networks are studied. The amount of deposited SWCNT is controlled by the inkjet printing technique. In dense networks the current-voltage behaviour is linear whereas for sparse films the behaviour is nonlinear. It is shown that the conduction path in dense films is through the metallic nanotubes, but in sparse films the percolation occurs through random networks of metallic and semiconducting SWCNTs having Schottky-type contacts. The existence of Schottky-junctions in the films is demonstrated with field-effect transistors (FET) on Si-chips and on polymer substrates. The latter is demonstrated as fully printed transistors using a single ink as a material source. FETs are further utilized as chemical-FET sensor applications. The performance of resistive CNT sensors and their comparisons with chem-FETs in terms of selectivity are studied for H2S gas.
34

Fabricating Malleable Interaction-Aware Materials / Fabrication de matériaux malléables et sensibles à l'interaction

Wessely, Michael 13 December 2018 (has links)
Les machines de fabrication personnelle, comme les imprimantes 3D, permettent aux créateurs occasionnels de fabriquer leurs propres objets. Il est possible de créer des pièces rigides, mais aussi des pièces souples, flexibles ou malléables. Ces propriétés mécaniques ouvrent des perspectives inédites dans la recherche en Interaction Homme-Machine (IHM) puisqu’elles permettent de réaliser de nouvelles formes d’interaction. Le défi reste toutefois d'intégrer des capteurs et du retour visuel dans ces matières. Les sciences des matériaux ont introduit plusieurs techniques pour produire des éléments interactifs, mais leur application requiert une expertise spécialisée ou la disposition d’équipements très couteux. Ma thèse se concentre sur les professions créatives, comme les professionnels du design, les architectes, ou les chercheurs en IHM. Elle vise à accompagner leur processus de conception et de prototypage avec des matériaux souples et interactifs, produisant des objets élastiques, des modèles avec des formes reconfigurables, ou même des maquettes qui peuvent être découpées. De tels matériaux pourraient enrichir notre interaction avec le monde numérique de trois manières différentes : 1) les dispositifs prosthétiques et l’informatique ubiquiste 2) le design de produits personnels 3) la fabrication interactive. J’introduis d’abord une nouvelle méthode pour intégrer des capteurs tactiles, des capteurs de proximité et des écrans électroluminescents dans des matériaux de silicone étirables. Basée sur des techniques d’impression en sérigraphie, la méthode permet de fabriquer rapidement des interfaces étirables et peu coûteuses, qui peuvent être intégrées dans les vêtements et dans d’autres objets ordinaires. Deuxièmement, je présente une approche pour créer des modules de constructions interactives, qu’on appelle “Tangramis Interactifs”. Les Tangramis interactifs sont des matériaux souples, par exemple du papier, pliés et combinés ensemble pour créer des structures modulaires en 3D. Ils peuvent réagir au toucher, être actionnés, et intégrer des composants électroniques comme des LEDs. Nous utilisons une technique rapide d’impression par jet d’encre pour intégrer des capteurs et des circuits dans le papier. Nous avons également développé une interface graphique qui permet aux créateurs de concevoir la forme et le comportement interactif de leurs propres interfaces physiques avant de les imprimer sur papier. Troisièmement, j’introduis une méthode de fabrication de matériau capable à identifier sa forme (“shape-aware material”). Ce matériau peut détecter et communiquer sa géométrie en temps réel durant son découpage par un créateur. La méthode s’appuie sur une nouvelle technologie de capteurs de forme, imprimés par jet d’encre et intégrés dans du matériel de maquettage, comme le carton mousse. Notre logiciel aide les créateurs à générer du matériel de prototypage en 2D ou en 3D qui peut capter sa forme, en configurant la topologie des capteurs pour optimiser la précision du modèle. Il permet également d’établir le lien entre un modèle physique et sa représentation numérique dans un environnement CAO (Conception Assisté par l’Ordinateur), par exemple Blender et Unity. Notre approche soutient un processus de fabrication bi-directionnelle en intégrant des outils de modélisation à la fois physiques et numériques. / Personal fabrication machines, such as 3D printers, allow casual makers to create custom objects, which may also contain soft, flexible, or shape-changeable parts. Making use of these mechanical properties and developing novel forms of interaction opens up new possibilities for research in Human-Computer-Interaction (HCI). However, embedding sensing and output capabilities into material is still challenging. Although research in materials science has introduced a range of methods for producing interaction-aware materials, these methods require significant domain expertise and often rely on specialized and expensive equipment. My dissertation focuses on casual makers, designers, and HCI researchers, and investigates how to support their design and physical modeling tasks with interactive, non-rigid materials that are stretchable, shape configurable, or cuttable. I explore three directions on how such materials can enhance user interaction, with applications to wearables and ubiquitous computing, DIY product design, and interactive fabrication. First, I introduce a new fabrication method for embedding touch sensing, proximity sensing, and electroluminescent displays into stretchable silicone materials. Based on screen printing, the method allows for rapidly fabricating inexpensive and highly stretchable user interfaces than can be embedded in wearables and other everyday objects. Second, I present an approach for creating interactive paper-folded building blocks that we call Interactive Tangrami. Interactive Tangrami are made of flexible materials such as paper, folded and combined together to form modular 3D structures. They support touch sensing and actuation and can also integrate rigid electrical components, such as LEDs. We use a rapid ink-jet printing technique to apply sensors and circuits on paper. We also offer a software tool that helps makers to design the geometry and interactive behavior of their physical user interfaces and then print them on paper. Third, I introduce a method for fabricating shape-aware material, which is modeling material that captures and streams its own shape while being cut by an artist. The method is based on a novel inkjet-printable sensing technology that can be embedded into a variety of cuttable material such as foam-core. Our software toolkit helps makers produce 2D or 3D shape-aware material and customize its sensing topology for higher sensing accuracy. It also allows them to link the physical model with its digital copy in a 3D CAD environment, such as Blender and Unity. Overall, our approach supports a bi-directional fabrication workflow that combines both physical and digital modeling tools.
35

Characterization of Flexible Hybrid Electronics Using Stretchable Silver Ink and Ultra-Thin Silicon Die

Ledgerwood, Joshua A. 01 June 2017 (has links)
Flexible Hybrid Electronics (FHEs) offer many advantages to the future of wearable technology. By combining the dynamic performance of conductive inks, and the functionality of ultra-thinned, traditional IC technology, new FHE devices allow for development of applications previously excluded by relying on a specific type of electronics technology. The characterization and reliability analysis of stretchable conductive inks paired with ultra-thin silicon die in theµm range was conducted. A silver based ink designed to be stretchable was screen printed on a TPU substrate and cured using box oven, conveyor convection oven, and photonic curing processes. Reliability tests were conducted including a tape test, crease test, wash test, and abrasion test. Optimization of each curing process resulted in all three methods’ ability to achieve the ink sheet resistance specification of <75mΩ/square/25µm. Reliability tests on the printing concluded that, if fully cured, all samples achieve similar reliability performance. Additionally, a series of 10 mm x 10 mm ultra-thin die were characterized using stylus profilometry and optical measurement in order to test the die quality and readiness for assembly. The die had been thinned from an initial thickness down of 600 µm to a target of 50 µm. A direct inverse relationship was shown between die thickness and die warpage, likely due to high levels of internal stress caused by the dicing and thinning process. Finally, an innovate pairing of serpentine copper clad traces on TPU was tested for reliability performance using traditional solder for die attachment.
36

Additive Manufacturing Techniques to Enhance the Performance of Electronics Created on Flexible andRigid Substrates

Hamad, Aamir Hamed 24 August 2020 (has links)
No description available.
37

Hall Effect Modeling in FEM Simulators and Comparison to Experimental Results in Silicon and Printed Sensors

Frem, Leonardo A 01 June 2016 (has links) (PDF)
Finite element method simulation models for thin-film semiconductor-based Hall sensors were developed using secondary data in order to understand their behavior under strong magnetic fields. Given a device geometry and charge carrier density and mobility, the models accurately calculated sensor resistance, Hall voltage under a normally-incident constant magnetic field, and expected offset from a population of Hall devices. The model was successfully matched against data from integrated chip Hall sensors from St. Jude Medical. Additionally, the feasibility of creating Hall effect devices with common carbon ink was explored experimentally. The material properties obtained from testing these ink-based devices through the Van der Pauw method were added to the simulation model to analyze validity of the collected data.
38

Development of Carbon Nanotube Inks for Printed Electronics

Ritaine, Dialia January 2023 (has links)
Single-walled carbon nanotubes (SWNTs) have excellent electronic, mechanical, and optical properties that make them promising materials for various applications. However, SWNT production methods produce a mixture of semiconducting and metallic species and non-SWNT impurities limiting their incorporation into devices. Among the different purification methods, conjugated polymer sorting has proven to be a scalable and cost-effective method. Conjugated polymers can easily be tuned to disperse SWNT species and obtain solubility in target solvents. They are multifunctional structures that enable the purification and extraction of specific SWNTs while simultaneously enhancing their processability. Therefore, they are suitable as purification methods for the fabrication of SWNT-based devices, particularly for printed electronics. However, the polymer backbone and the non-conductive side-chains negatively impacts the performance of SWNT devices by preventing good contact between the nanotubes. We first functionalized our polymer with thermally cleavable side-chains and demonstrated that the removal of the side-chains leads to a higher conductivity. We obtained stable dispersions in two green solvents compatible with inkjet printing. We also functionalized our polymer with photocleavable side-chains and showed efficient cleavage in solution. These investigations represent a proof-of-concept that could be used for the development of SWNT-based devices where the removal of the side-chains will improve the device performance. Lastly, we synthesized a fluorene-based polymer that contains a photocleavable ortho-nitrobenzylether unit and is functionalized with hydrophilic side-chains. We demonstrated the degradation of the polymer in organic and aqueous solvents. These investigations highlight the challenges of dispersing SWNTs in aqueous solvents using conjugated polymer. / Thesis / Doctor of Philosophy (PhD) / The objective of this thesis is to develop cleavable complexes between conjugated polymers and single-walled carbon nanotubes (SWNTs) to maximize the potential performance of printed devices post-processing. We functionalized a conjugated polymer with cleavable side-chains and investigated the impact on the conductivity after their removal. In addition, this work also focuses on dispersing SWNTs in green solvents that are compatible with printing processes such as inkjet printing. Lastly, we synthesized a degradable and water-soluble conjugated polymers to produce dispersant free-SWNTs.
39

Optimization and Characterization of an Inkjet Process for Printed Electronics

Hanlon, Patrick A. 19 June 2018 (has links)
No description available.
40

Life Cycle Assessment of Paper Based Printed Circuits

Wan, Qiansu January 2017 (has links)
Printed circuit boards have been massively manufactured and wildly used in all kinds of electronic devices during people’s daily life for more than thirty years since the last century. As a highly integrated device mainly consists of silicon base, an etched copper layer and other soldered components, massive production of printed circuit boards are considered to be environmentally unfriendly due to the wet chemical manufacturing mode and lack of recycling ability. On the other hand, the newly invented ink jet printing technology enables cost-effective manufacturing of flexible, thin and disposable electrical devices, which avoid acid etching process and lead to less toxic emissions into the environment. It is important to consider life cycle analysis for quantitative environmental impact evaluation and comparison of both printed circuit boards and printed electronics to enhance the sustainability of a new technology with product design and development. This thesis first reviews the current approaches to conventional and modern printing methods, as well as the state-of-the-art analysis of sustainability and environmental assessment methodologies. In the second part, a typical ink jet printed electronic device is introduced (an active flexible cable for wearable electrocardiogram monitoring). This active cable is designed for the interconnection between bio electrodes and central medical devices for bio signal transmission. As the active cable consists of five different metal transmission traces which are formed by printing conductive ink onto paper substrates, different shielding methods are investigated to ensure high quality bio signal transmission. Specifically, the results prove that passive shielding methods can significantly decrease the cross talk between different transmission traces, enabling the transmitting of bio signals for wearable ECG monitoring. This research also explores environmental issues related to printed electronics. For the full life cycle of printed electronics, we focused not only on quantitative environmental emissions to air, fresh water, sea and industrial soil, but also on resource consumption and impacts analysis. Finally, comparative environmental performance evaluation of traditional cables and ink jet printed active cables are made to examine the environmental impact and sustainability of both technologies, and the results show the strengths and weaknesses of each technology by analysis and assessment. / <p>QC 20171205</p>

Page generated in 0.0887 seconds