Spelling suggestions: "subject:"magnetoelectronics"" "subject:"andelectronics""
41 |
Selective Deposition of Copper Traces onto Additively Manufactured All-Aromatic Polyimides via Laser Induced Graphene to Enable Conformal Printed ElectronicsWotton, Heather Dawn 03 April 2024 (has links)
The hybridization of direct write (DW) and additive manufacturing (AM) technologies to create additively manufactured electronics (AME) has enabled the integration of electrical functionality to form multifunctional AM components. Current work in AME has demonstrated the integration of conductive traces into and onto geometries and form factors that are not possible through traditional electronics packaging processes. This has largely been accomplished by using AM and DW technology to deposit conductive inks to form interconnects on the surface of AM substrates or within multimaterial AM geometries. However, the requisite thermal post-processing and high resistivity of the conductive inks and the limitations in thermal and dielectric performance of printable substrates commonly used in AME restrict the capabilities of these parts.
This thesis proposes an alternative process for the conformal deposition of low resistivity traces on additively manufactured all-aromatic polyimides (AM-PI) without the use of conductive inks. This is accomplished through the selective patterning of laser induced graphene (LIG), a porous 3D graphene fabricated via laser irradiation, onto the AM-PI. While the resultant LIG is conductive, its resistivity is further reduced by the electrodeposition of copper (Cu-LIG).
In this thesis, the synthesis of LIG on AM-PI, thermally post processed to 240℃, 300℃, and 450℃, is demonstrated and characterized through sheet resistance measurements and Raman spectroscopy. AM-PI post-processed to 300℃ demonstrated the lowest resistivity LIG formation (13.8 Ω/square). The resistivity of Cu-LIG is compared to an industry standard silver ink (Micromax CB028) used in direct write hybrid manufacturing applications. Cu-LIG was found to have a measured resistivity (1.39e-7 Ω·m), two orders of magnitude lower than the measured resistivity of the CB028 silver ink (1.62e-5 Ω·m). Additionally, the current capacity of the Cu-LIG was demonstrated and Joule heating of the material was observed via IR thermography. Cu-LIG demonstrated no failure of conductive trace or substrate under 5A of current for 2 minutes, heating to a maximum recorded temperature of 76.3℃.
Several multifunctional components were fabricated as case studies to further validate the process. Several small passive electronic devices (e.g., a heater and an interdigitated capacitor) are fabricated to demonstrate selective deposition of complex copper traces. The fabrication of an Archimedes spiral on a hemispherical substrate via Cu-LIG is completed to demonstrate the ability to use the process to fabricate conformal conductive traces. An LED circuit is fabricated on a face-center cubic AM-PI lattice which demonstrates multi-planar fabrication on geometrically complex 3D printed substrates. / Master of Science / The hybridization of direct write (DW) and additive manufacturing (AM) technologies to create additively manufactured electronics (AME) has enabled the fabrication of AM components which have electronic functionality. Current work in AME has demonstrated the integration of conductive traces into and onto geometries and form factors that are not possible through traditional electronics packaging processes. This has largely been accomplished through the deposition of conductive inks to form interconnects on the surface of AM substrates or within multimaterial AM geometries. However, these conductive inks require thermal post-processing temperatures which exceed the thermal performance of common AM substrates. The dielectric performance of AM substrates is also restrictive to the capabilities of these parts.
This thesis proposes an alternative process for the conformal deposition of low resistivity traces on high performance additively manufactured all-aromatic polyimides (AM-PI) without the use of conductive inks. This is accomplished through the selective patterning of laser induced graphene (LIG), a porous 3D graphene fabricated via laser irradiation, onto the AM-PI. While the resultant LIG is conductive, its resistivity is further reduced by the electrodeposition of copper (Cu-LIG).
In this thesis, the synthesis of LIG on AM-PI, thermally post processed to 240℃, 300℃, and 450℃, is demonstrated and characterized through sheet resistance measurements and Raman spectroscopy. AM-PI post-processed to 300℃ demonstrated the lowest sheet resistance LIG formation (13.8 Ω/square). The resistivity of Cu-LIG is compared to an industry standard silver ink (Micromax CB028) used in direct write hybrid manufacturing applications. Cu-LIG was found to have a measured resistivity (1.39e-7 Ω·m), two orders of magnitude lower than the measured resistivity of the CB028 silver ink (1.62e-5 Ω·m). Additionally, the thermal performance and current capacity of the Cu-LIG was demonstrated by observing resistive heating of the material under current load via IR thermography. Cu-LIG demonstrated no failure of conductive trace or substrate under 5A of current for 2 minutes, heating to a maximum recorded temperature of 76.3℃.
Several multifunctional components were fabricated as case studies to further validate the process. A heater and an interdigitated capacitor are fabricated to demonstrate selective deposition of complex copper traces. The fabrication of an Archimedes spiral on a dome via Cu-LIG is completed to demonstrate the ability to use the process to fabricate conformal conductive traces. An LED circuit is fabricated on an AM-PI lattice which demonstrates multi-planar fabrication on geometrically complex 3D printed substrates.
|
42 |
Charge Transport Modulation and Optical Absorption Switching in Organic Electronic DevicesAndersson, Peter January 2007 (has links)
Organic electronics has evolved into a well-established research field thanks to major progresses in material sciences during recent decades. More attention was paid to this research field when “the discovery and development of conductive polymers” was awarded the Nobel Prize in Chemistry in 2000. Electronic devices that rely on tailor-made material functionalities, the ability of solution processing and low-cost manufacturing on flexible substrates by traditional printing techniques are among the key features in organic electronics. The common theme while exploring organic electronics, and the focus of this thesis, is that (semi-)conducting polymers serve as active materials to define the principle of operation in devices. This thesis reviews two kinds of organic electronic devices. The first part describes electrochemical devices based on conducting polymers. Active matrix addressed displays that are printed on flexible substrates have been obtained by arranging electrochemical smart pixels, based on the combination of electrochemical transistors and electrochromic display cells, into cross-point matrices. The resulting polymer-based active-matrix displays are operated at low voltages and the same active material is used in the electrochemical transistors as well as in the electrochromic display cells, simply by employing the opto-electronic properties of the material. In addition to this first part, a switchable optical polarizer based on electrochromism in a stretch-aligned conducting polymer is described. The second part reports switchable charge traps in polymer diodes. Here, a device based on a solid-state blend of a conjugated polymer and a photochromic molecule has been demonstrated. The solid state blend, sandwiched between two electrodes, provide a polymer diode that allows reversible current modulation between two different charge transport mechanisms via externally triggered switching of the charge trap density.
|
43 |
Conception et réalisation de capteurs (température et pouls) imprimés sur support souple / Conception and realization of sensors (temperature, pulse) printed on flexible supportDankoco, Mariam Dème 21 April 2016 (has links)
La thèse s’inscrit dans le cadre du projet de recherche collaborative VEADISTA (Veille à distance et alerte intelligente) qui repose sur la conception d’une technologie ergonomique à bas coût. L’objectif de cette thèse est de concevoir et de réaliser des capteurs de température et de pression imprimés sur support flexible pour des applications biomédicales. Ils doivent être adaptés à une intégration sur un transpondeur passif télé-alimenté, conformables pour s’adapter au bras du patient, bas coût et permettant un transfert technologique vers l’industrie.Des prototypes de tests ont été réalisés dans le but d’identifier la topologie et la couche active les plus prometteuses pour la réalisation des capteurs de température en tout imprimé sur support souple. A l’issue de cette étude préliminaire, une thermorésistance à base d’encre d’argent a été réalisée par jet d’encre sur un substrat flexible. La caractérisation de ces capteurs a permis d’évaluer leur sensibilité et d’attester de leur bonne linéarité.Des tests préliminaires sur des capteurs commerciaux ont ensuite été effectués pour démontrer qu’il était possible de détecter le rythme cardiaque avec un capteur de pression. A la suite de cette étude, des capteurs de pression sur support souple ont été fabriqués en utilisant la technologie jet d’encre. Ces capteurs ont été caractérisés électriquement sous contrainte mécanique contrôlée. Pour aboutir à ces résultats, de nombreux développements technologiques ont été réalisés autour de la technique d’impression par jet d’encre. La maîtrise du triptyque encre-tête d’impression-substrat est en effet indispensable pour l’obtention de motifs de qualité. / This thesis is a part of the collaborative research project VEADISTA (Remote monitoring of vital parameters and smart alerts) based on the conception of an ergonomic technology at low-cost.The objective of this thesis is to design and to realize printed temperature and pressure sensors on flexible support for biomedical applications. Subsequent to this, these sensors must be suitable to an integration on a passive transponder remotely powered, conformable to fit the patient's arm, low cost and allowing a technological transfer towards industry.Prototype tests were realized in order to identify the most promising topology and active layer to achieve printed temperature sensors on flexible support. At the end of this preliminary study, a RTD based on a silver ink was performed by inkjet on a flexible substrate (Kapton). The characterization of these sensors allowed to assess their sensitivity and to attest to their good linearity.The preliminary tests on commercial sensors were then made to demonstrate that it was possible to detect the heart rate with a pressure sensor. Following this study, pressure sensors were manufactured on flexible support using inkjet technology. These sensors were electrically characterized under controlled mechanical constraint. To achieve these results, many technological developments were realized around the inkjet printing technique. The mastery of the ink – inkjet head – substrate interaction is indeed essential for obtaining good printed quality and functional sensors.
|
44 |
Antenas para sistemas RFID impressas em substrato flexível. / Antennas for RFID systems printed on flexible substrate.Robson Valmiro 12 February 2015 (has links)
Identificação de Dispositivos por Radiofrequência, do inglês, Radio Frequency Identification Device (RFID), é uma tecnologia para identificação, rastreamento e gerenciamento de produtos, animais e até mesmo pessoas sem a necessidade de um campo visual. Com o objetivo de alcançar custos menores e a utilização de processos de fabricação menos agressivo ao meio ambiente, tornou-se importante o desenvolvimento de novos tipos de etiquetas (tags). Em vista disso, a fabricação de antenas impressas compactas usando tinta condutiva, representa uma boa opção. O objetivo dessa pesquisa é o projeto e fabricação de antenas impressas sobre substratos flexíveis utilizando tinta condutiva composta de nanopartículas de prata. O desenvolvimento deste tipo de etiquetas é justificado principalmente pelos seguintes motivos. Primeiro, o processo reduz o uso de agentes químicos comumente empregados na fabricação convencional, levando a uma significativa redução no impacto ambiental. Segundo, a fabricação utilizando substratos como, por exemplo, papel ou polímero, reduz substancialmente o custo final da etiqueta. Estudos teóricos e práticos, juntamente com simulações eletromagnéticas foram realizados. Dois processos de prototipagem da etiqueta foram executados: um utilizando uma impressora jato de tinta que funciona propelindo gotas de tinta sobre o substrato e o outro utilizando serigrafia ou silkscreen printing que é muito prático para imprimir formas geométricas através de uma tela de fios trançados. Esses métodos de impressão permitiram a produção rápida da antena sem a necessidade de máscaras de fotolitografia, como é amplamente utilizado na indústria eletrônica. Quatro protótipos foram produzidos e medidas foram realizadas para verificar a viabilidade da utilização dessas etiquetas impressas em relação à sua operação, a confiabilidade das informações armazenadas e a troca de dados com o leitor RFID via interface aérea. Os resultados práticos foram comparados com os obtidos de etiquetas comerciais, onde foi possível verificar que a antena fabricada com tinta condutiva é capaz de capturar e radiar ondas eletromagnéticas de forma eficiente, resultando em uma troca de dados confiáveis através da interface aérea. / Radio Frequency Identification Device (RFID), it is a technology using electromagnetic waves for identifying, tracking and management of products, animals and even people without requiring a visual field. Aiming at achieving low costs and using less aggressive manufacturing processes to the environment, it has become important to develop new types of RFID tags. In view of that, manufacturing compact printed antennas using conductive ink represents a good option. The goal of this research is the design of printed antennas on flexible substrates using silver nanoparticles ink. The developing of this type of tags is justified mainly by the following reasons. First, the process reduces the use of chemical agents commonly employed in conventional manufacturing leading to a significant reduction of the environmental impact. Second, the fabrication using substrates such as paper and polymer foils, substantially reduces the final cost of the tags. Theoretical and practical studies along with electromagnetic simulations were conducted. Two process of RFID prototyping were performed: one using an inkjet printer that operates by propelling particles of conductive ink onto the substrate and another using silkscreen printing that is a very practical method to print geometric forms through a twisted wires screen. These technologies allowed fast production of the antenna without requiring photolithographic masks, as it is widely used in the electronics industry. Four prototypes were produced and measurements were taken to verify the feasibility of using RFID tags printed with conductive ink regarding to its operation, reliability of the stored information and the exchange of data with the RFID reader via air interface. Practical results were compared with those obtained of the commercial tags. It was possible to verify that the antenna manufactured with conductive ink was able to capture and radiate efficiently electromagnetic waves, resulting in reliable exchange of data with the reader through the air interface
|
45 |
Antenas para sistemas RFID impressas em substrato flexível. / Antennas for RFID systems printed on flexible substrate.Valmiro, Robson 12 February 2015 (has links)
Identificação de Dispositivos por Radiofrequência, do inglês, Radio Frequency Identification Device (RFID), é uma tecnologia para identificação, rastreamento e gerenciamento de produtos, animais e até mesmo pessoas sem a necessidade de um campo visual. Com o objetivo de alcançar custos menores e a utilização de processos de fabricação menos agressivo ao meio ambiente, tornou-se importante o desenvolvimento de novos tipos de etiquetas (tags). Em vista disso, a fabricação de antenas impressas compactas usando tinta condutiva, representa uma boa opção. O objetivo dessa pesquisa é o projeto e fabricação de antenas impressas sobre substratos flexíveis utilizando tinta condutiva composta de nanopartículas de prata. O desenvolvimento deste tipo de etiquetas é justificado principalmente pelos seguintes motivos. Primeiro, o processo reduz o uso de agentes químicos comumente empregados na fabricação convencional, levando a uma significativa redução no impacto ambiental. Segundo, a fabricação utilizando substratos como, por exemplo, papel ou polímero, reduz substancialmente o custo final da etiqueta. Estudos teóricos e práticos, juntamente com simulações eletromagnéticas foram realizados. Dois processos de prototipagem da etiqueta foram executados: um utilizando uma impressora jato de tinta que funciona propelindo gotas de tinta sobre o substrato e o outro utilizando serigrafia ou silkscreen printing que é muito prático para imprimir formas geométricas através de uma tela de fios trançados. Esses métodos de impressão permitiram a produção rápida da antena sem a necessidade de máscaras de fotolitografia, como é amplamente utilizado na indústria eletrônica. Quatro protótipos foram produzidos e medidas foram realizadas para verificar a viabilidade da utilização dessas etiquetas impressas em relação à sua operação, a confiabilidade das informações armazenadas e a troca de dados com o leitor RFID via interface aérea. Os resultados práticos foram comparados com os obtidos de etiquetas comerciais, onde foi possível verificar que a antena fabricada com tinta condutiva é capaz de capturar e radiar ondas eletromagnéticas de forma eficiente, resultando em uma troca de dados confiáveis através da interface aérea. / Radio Frequency Identification Device (RFID), it is a technology using electromagnetic waves for identifying, tracking and management of products, animals and even people without requiring a visual field. Aiming at achieving low costs and using less aggressive manufacturing processes to the environment, it has become important to develop new types of RFID tags. In view of that, manufacturing compact printed antennas using conductive ink represents a good option. The goal of this research is the design of printed antennas on flexible substrates using silver nanoparticles ink. The developing of this type of tags is justified mainly by the following reasons. First, the process reduces the use of chemical agents commonly employed in conventional manufacturing leading to a significant reduction of the environmental impact. Second, the fabrication using substrates such as paper and polymer foils, substantially reduces the final cost of the tags. Theoretical and practical studies along with electromagnetic simulations were conducted. Two process of RFID prototyping were performed: one using an inkjet printer that operates by propelling particles of conductive ink onto the substrate and another using silkscreen printing that is a very practical method to print geometric forms through a twisted wires screen. These technologies allowed fast production of the antenna without requiring photolithographic masks, as it is widely used in the electronics industry. Four prototypes were produced and measurements were taken to verify the feasibility of using RFID tags printed with conductive ink regarding to its operation, reliability of the stored information and the exchange of data with the RFID reader via air interface. Practical results were compared with those obtained of the commercial tags. It was possible to verify that the antenna manufactured with conductive ink was able to capture and radiate efficiently electromagnetic waves, resulting in reliable exchange of data with the reader through the air interface
|
46 |
Nontraditional amorphous oxide semiconductor thin-film transistor fabricationSundholm, Eric Steven 11 September 2012 (has links)
Fabrication techniques and process integration considerations for amorphous oxide semiconductor (AOS) thin-film transistors (TFTs) constitute the central theme of this dissertation. Within this theme three primary areas of focus are pursued.
The first focus involves formulating a general framework for assessing passivation. Avoiding formation of an undesirable backside accumulation layer in an AOS bottom-gate TFT is accomplished by (i) choosing a passivation layer in which the charge neutrality level is aligned with (ideal case) or higher in energy than that of the semiconductor channel layer charge neutrality level, and (ii) depositing the passivation
layer in such a manner that a negligible density of oxygen vacancies are present at the channel-passivation layer interface. Two AOS TFT passivation schemes are explored. Sputter-deposited zinc tin silicon oxide (ZTSO) appears promising for suppressing
the effects of negative bias illumination stress (NBIS) with respect to ZTO and IGZO TFTs. Solution-deposited silicon dioxide is used as a barrier layer to subsequent PECVD silicon dioxide deposition, yielding ZTO TFT transfer curves showing that the dual-layer passivation process does not significantly alter ZTO TFT
electrical characteristics.
The second focus involves creating an adaptable back-end process compatible with flexible substrates. A detailed list of possible via formation techniques is presented with particular focus on non-traditional and adaptable techniques. Two of the
discussed methods, "hydrophobic surface treatment" and "printed local insulator," are demonstrated and proven effective.
The third focus is printing AOS TFT channel layers in order to create an adaptable and additive front-end integrated circuit fabrication scheme. Printed zinc indium aluminum oxide (ZIAO) and indium gallium zinc oxide (IGZO) channel layers are demonstrated using a SonoPlot piezoelectric printing system.
Finally, challenges associated with printing electronic materials are discussed. Organic-based solutions are easier to print due to their ability to "stick" to the substrate and form well-defined patterns, but have poor electrical characteristics due
to the weakness of organic bonds. Inorganic aqueous-based solutions demonstrate good electrical performance when deposited by spin coating, but are difficult to print because precise control of a substrate's hydrophillic/hydrophobic nature is required. However, precise control is difficult to achieve, since aqueous-based solutions either spread out or ball up on the substrate surface. Thickness control of any printed solution
is always problematic due to surface wetting and the elliptical thickness profile of a dispensed solution. / Graduation date: 2013
|
47 |
Contrôle de la formation de motifs conducteurs par jet d'encre : Maîtrise multi-échelle des transferts de matière dans des suspensions nanométriques / Controle of conducting partern formation by inkjet printing : Multi-scale control of material transfert in nanometric suspensionsFaure, Vincent 05 December 2017 (has links)
Ce travail de thèse est centré sur la compréhension des mécanismes mis en jeu lors de l’impression d’encres à base de nanoparticules d’argent en jet d’encre dans le but d’optimiser la production de fines (<100 µm) pistes conductrices performantes et homogènes. L’impression jet d’encre se décompose en plusieurs étapes : l’éjection de gouttelettes picovolumétriques, l’impact sur le support, l’étalement et le séchage. La phase de séchage est une phase complexe sujette aux phénomènes de transfert de matière comme l’effet coffee ring. Cet effet, dû au flux capillaire qui induit un mouvement du centre vers les bords de la goutte, conduit la majorité des particules en suspension sur les bords du motif imprimé. L’objectif de ce travail est de décrire et de comprendre précisément les mécanismes qui opèrent et qui conduisent à ces effets de transfert de matière pour les limiter, voire les annuler et ainsi garantir la production de pistes conductrices fines et homogènes aux performances élevées. Pour atteindre cet objectif, trois axes de travail ont été développés: (i) Une première étude s’est concentrée sur l’analyse des différentes phases régissant la vie d’une goutte éjectée en jet d’encre. L’identification et l’optimisation des paramètres clés influençant la morphologie des gouttes jet d’encre après séchage ont été réalisées avec un focus particulier sur l’influence de la température du support. Quatre indices géométriques sont proposés pour caractériser quantitativement l’homogénéité du profil des gouttes produites. (ii) Une seconde partie du travail s’est spécifiquement concentrée sur la phase de séchage des gouttes picovolumétriques pour comprendre les phénomènes engagés. Une modélisation du séchage des gouttes est notamment proposée pour permettre une meilleure compréhension des phénomènes de transfert de matière observés. (iii) Enfin, une dernière partie s’intéresse à la production par jet d’encre de fines lignes conductrices (cas de gouttelettes juxtaposées). Des corrélations entre la morphologie des lignes, celle des gouttes individuelles et les performances électriques seront établies afin de produire des systèmes optimisés. / This thesis focuses on the understanding of the mechanisms involved in the inkjet printing of silver nanoparticles-based inks in order to optimize the manufacturing of thin (width <100 µm) conductive tracks with high and homogeneous performances. Inkjet printing can be divided into several phases: the ejection of picovolumetric droplets, the impact on the substrate, the spreading and the drying. The drying phase is a complex phase prone to particle migration phenomena such as coffee ring effect. This phenomenon, due to the capillary flow which implies a movement from the center to the edges of the drop, drives most of the suspended particles towards the edges of the printed patterns. The aim of this work is to describe precisely and understand the mechanisms which operate and lead to the transfer effects in order to limit or even eliminate them and guarantee the production of performing and homogenous fine conductive lines. To achieve this objective, three paths of investigation were developed: (i) a first axis deals with the study of the different phases of the droplet generation process. Parameters impacting the dried droplet morphology are identified and optimized with a focus on substrate temperature. Four geometrical indexes are designed to characterize quantitatively the dried droplet profile homogeneity. (ii) A second axis specifically studies the drying phase of picovolumetric droplet in order to understand the phenomena occurring during this phase. A modelling of droplet drying is set up in order to understand the forces influencing the matter transport. (iii) Finally, a last axis studies the print of thin conductive lines composed of several printed droplets partially superimposed. Correlations between line morphology, droplet morphology and electrical conductivity are established in order to produce optimized systems.
|
48 |
Mikroelektrodová pole pro bioelektroniku / Microelectrode arrays for mioelectronicBráblíková, Aneta January 2019 (has links)
Organic electronic biosensors are developed as suitable devices that can transform electrochemical processes within the cell membrane into an electronic signal and enable to measure electrical activity of excitable cells and tissues both in vitro and in vivo and thus represent valuable alternative to current cell monitoring methods. In this work we focus on the fabrication of electrophysiological sensors based on organic semiconductors printed by the material printing method. Microelectrode arrays (MEAs) are active components of the device, which can monitore cellular activity and above that stimulating cells with electrical pulses. The proposed platform should be used for cytotoxicity of potential drugs especially on cardiac cells (cardiomyocytes). The experimental part focus on specific production processes of platforms, which were prepared in the laboraty with emphasis on biocompatibility and conductivity of device.
|
49 |
Performance evaluation and development of contact solutions for flexible organic solar cellsHamer, Bastiaan January 2020 (has links)
In today’s society many non-renewable and environmentally harming energy sources are used to facilitate people’s everyday energy demands. This causes ecosystems to break down, global temperatures to rise, pollution and many more critical long lasting problems. By replacing non-renewable energy sources and taking advantage of the 100% renewable energy source, light, these problems will diminish. This project has been in collaboration with a company called Epishine who develop indoor organic solar cell devices to be able to replace conventual battery driven electrical devices with solar power harvested from indoor light. Since there is no good existing contacting solution, for Epishine to be able to enter the market, a contact solution between their solar cell device and the electrical devices it will power has to be developed. This thesis focuses on developing, designing, testing and evaluating the performance of new contact solutions for encapsulated flexible organic printed solar cells with the feasibility, viability, scalability and durability in focus. This project was conducted by first performing a literature study, thereafter, establishing a baseline for future referencing of new contact solutions and the main part, developing new concepts and evaluating them. By using the design thinking method, an iterative process could take place, allowing for a constant flow of new ideas whilst testing concepts throughout the project. The baseline tests were successful and the hypothesis of organic materials degrading over time was confirmed. From the many sub-concepts and production methods for a new contacting solution, two concepts showed promising results and were merged into one main concept. Two devices were created with the new concept, one functional device and one showing the design. To conclude, the thesis resulted in a functional solar cell device with a new contact solution which shows great potential and a new production method which enables all organic printed electronics to be design and developed in a more compact and component dense design. This production method is beneficial to not only Epishine, but everywhere where printed electronics are used and need to be optimized due to restrictions such as space and weight. / I dagens samhälle används många icke-förnybara energikällor för att underlätta människans vardagliga behov men skadar samtidigt miljön. Detta leder till att hela ekosystem fallerar, den globala temperaturen stiger, giftiga ämnen släpps fria och flera kritiska, långvariga problem skapas. Genom att byta ut icke-förnybara energikällor och istället dra nytta av den 100 % förnybara energikällan, ljus, kommer dessa ovanstående problem att minska. Detta projekt har varit i samarbete med ett företag vid namn Epishine som utvecklar organiska solcellsenheter för inomhusbruk, för att kunna ersätta konventionella batteridrivna elektriska apparater med solenergi tillvaratagen av inomhusbelysning. I dagsläget finns det ingen bra kontaktlösning mellan solcellsenheten och den apparat den ska driva, vilket är ett av Epishines större problem i nuläget, som hindrar dem från att kunna slå igenom på marknaden. Denna avhandling fokuserar på att utveckla, designa, testa och utvärdera prestandan av nya kontaktlösningar för inkapslade flexibla organiska solceller. Projektet började med en litteraturstudie, därefter etablerades en ”baseline” för att kunna jämföra de nya kontaktlösningarna. Största delen av rapporten handlar om att utveckla och testa nya kontaktlösningar för att sedan utvärdera dem. Genom att använda ”Design thinking” processen, kunde en iterativ process äga rum, vilket möjliggjorde ett konstant flöde med nya idéer som genererades samtidigt som koncept och prototyper utvecklades och utvärderades. Resultaten av ”baseline”-testerna var framgångsrika och hypotesen om att de konduktiva egenskaperna av organiska material försämras med tiden bekräftades. Från alla delkoncept och potentiella produktionsmetoderna för en ny kontaktlösning visade två koncept lovande resultat och slogs därför samman till ett huvudkoncept. Två olika solcellsenheter skapades med den nya kontaktlösningen implementerad. En funktionell enhet skapades och en enhet som visar layouten och designen. Sammanfattningsvis resulterade avhandlingen i en funktionell solcellsenhet med en ny kontaktlösning som visar stor potential samt en ny produktionsmetod som gör att all organisk tryckt elektronik kan designas och tillverkas i en mer kompakt och komponenttät design. Denna produktionsmetod är en fördel inte bara för Epishine utan också överallt där tryckt elektronik används och behöver optimeras i form av utrymme och vikt.
|
50 |
Electrically conductive textile coatings with PEDOT:PSSÅkerfeldt, Maria January 2015 (has links)
In smart textiles, electrical conductivity is often required for several functions, especially contacting (electroding) and interconnecting. This thesis explores electrically conductive textile surfaces made by combining conventional textile coating methods with the intrinsically conductive polymer complex poly(3,4-ethylene dioxythiophene)-poly(styrene sulfonate) (PEDOT:PSS). PEDOT:PSS was used in textile coating formulations including polymer binder, ethylene glycol (EG) and rheology modifier. Shear viscometry was used to identify suitable viscosities of the formulations for each coating method. The coating methods were knife coating, pad coating and screen printing. The first part of the work studied the influence of composition of the coating formulation, the amount of coating and the film formation process on the surface resistivity and the surface appearance of knife-coated textiles. The electrical resistivity was largely affected by the amount of PEDOT:PSS in the coating and indicated percolation behaviour within the system. Addition of a high-boiling solvent, i.e. EG, decreased the surface resistivity with more than four orders of magnitude. Studies of tear strength and bending rigidity showed that textiles coated with formulations containing larger amounts of PEDOT:PSS and EG were softer, more ductile and stronger than those coated with formulations containing more binder. The coated textiles were found to be durable to abrasion and cyclic strain, as well as quite resilient to the harsh treatment of shear flexing. Washing increased the surface resistivity, but the samples remained conductive after five wash cycles. The second part of the work focused on using the coatings to transfer the voltage signal from piezoelectric textile fibres; the coatings were first applied using pad coating as the outer electrode on a woven sensor and then as screen-printed interconnections in a sensing glove based on stretchy, warp-knitted fabric. Sensor data from the glove was successfully used as input to a microcontroller running a robot gripper. These applications showed the viability of the concept and that the coatings could be made very flexible and integrated into the textile garment without substantial loss of the textile characteristics. The industrial feasibility of the approach was also verified through the variations of coating methods.
|
Page generated in 0.0913 seconds