Spelling suggestions: "subject:"problema dde cauchy"" "subject:"problema dee cauchy""
21 |
Teoria de semigrupos e aplicações a equações impulsivas com retardamento dependendo do estado / Semigroup theory and applications to impulsive differential equation with state-dependent delayUnião, Gabriel Gonçalves 17 April 2006 (has links)
Neste trabalho estudaremos a existência de soluções fracas para uma classe de equações diferenciais funcionais impulsivas com retardamento dependendo do estado modeladas na forma \'x POT. PRIME\'(t) = Ax(t) + f(t;\' x IND. p(t, xt)), t \'PERTENCE A\'I = [0,a], \'x IND. 0\' =\\varphi \'PERTENCE A\' B, \'DELTA\' \'x(t IND. i) = \'I IND.i\'i(\'x IND.i\'); i = 1, ...n, onde A é o gerador infinitesimal de um \'C IND. 0\'-semigrupo compacto de operadores lineares limitados (\'T\'(t))t \'. OU =\'0 definido em um espaço de Banach X; as fun»ções \'x IND. s\' : (- \'INFIINITO\', 0] \'SETA\' X, \'x IND. s\' ( teta\') = x(s + \'teta\'), estão em um espaço de fase B descrito axiomaticamente; f : I X B \'seta\' X, \'rô\' : I X B \'SETA\' ( - \'INFINITO\', a], \'I IND. i\' : B \'SETA\'X, i=1, ...n , são funções apropriadas; 0 < \'t IND.1\' <... < \'t IND. n\' < a são n¶umeros pré-fixados e o símbolo \'DELTA\'\'ksi\'(t) = \'Ksi\'(\'t POT. + ) - \'ksi\'( \'t POT. -). / In this work we stablish the existence of mild solutions for an impulsive abstract functional differential equation with state-dependent delay described in the form \'x POT. PRIME\'(t) = Ax(t) + f(t;\' x IND. p(t, xt)), t \'BELONGS\'I = [0,a], \'x IND. 0\' =\\varphi \'IS CONTAINED\' B, \'DELTA\' \'x(t IND. i) = \'I IND.i\'i(\'x IND.i\'); i = 1, ...n, where A is the infinitesimal generator of a compact \'C IND. 0\'-semigroup of bounded linear operators (\'T\'(t))t \'. OU =\'0 defined on a Banach space X; the functions \'x IND. s\': ( - INFINito, 0] \'SETA X, \'x IND. s\'(\'teta\') , belongs to some space B described axiomatically; f : I X B \'seta\' X, \'rô\' : I X B \'SETA\' ( - \'INFINITO\', a], \'I IND. i\' : B \'SETA\'X, i=1, ...n , são funções apropriadas; 0 < \'t IND.1\' <... < \'t IND. n\' < a são n¶umeros pré-fixados e o símbolo \'DELTA\'\'ksi\'(t) = \'Ksi\'(\'t POT. + ) - \'ksi\'( \'t POT. -).
|
22 |
Funções s-assintoticamente periódicas em espaços de Banach e aplicações à equações diferenciais funcionais / S-asymptotically periodic functions on Banach spaces and applications for functional differential equationsHernandez, Michelle Fernanda Pierri 13 April 2009 (has links)
Este trabalho está voltado para o estudo de uma classe de funções contínuas e limitadas f : [0; \'INFINITO\') \'SETA\' X para as quais existe \'omega\' \'> OU =\' 0 tal que \'lim IND. t\' \'SETA\' \'INFINITO\' (f(t + \'omega\') - f(t)) = 0. No decorrer do trabalho, chamaremos estas funções de S-assintoticamente \'omega\'-periódicas. Nós discutiremos propriedades qualitativas para estas funções e algumas relações entre este tipo de funções e a classe de funções assintoticamente \'omega\'-periódicas. Também estudaremos a existência de soluções fracas S-assintoticamente \'omega\'-periódicas para uma classe de primeira ordem de um problema de Cauchy abstrato bem como para algumas classes de equações diferenciais funcionais parciais neutras com retardo não limitado. Algumas aplicações para equações diferenciais parciais serão consideradas / This work is devoted to the study of the class of continuous and bounded functions f : [0 \'INFINIT\') \'ARROW\' X for which there exists \'omega\' > 0 such that \'limt IND.t \'ARROW\' \'INFINIT\'(f(t + \'omega\'!) - f(t)) = 0 (in the sequel called S-asymptotically !-periodic functions). We discuss qualitative properties and establish some relationships between this type of functions and the class of asymptotically \'omega\'-periodic functions. We also study the existence of S-asymptotically \'omega\'-periodic mild solutions for a first-order abstract Cauchy problem in Banach spaces and for some classes of abstract neutral functional differential equations with infinite delay. Furthermore, applications to partial differential equations are given
|
23 |
Existência de soluções de equilíbrios tipo Instanton para uma equação de evolução com convolução. / Existence of solutions of equilibrium type Instanton for an evolution equation with convolution.MACÊDO, Hildênio José. 25 July 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-07-25T18:45:49Z
No. of bitstreams: 1
HILDÊNIO JOSÉ MACEDO - DISSERTAÇÃO PPGMAT 2011..pdf: 310824 bytes, checksum: ce96943d42ca2ee474b2fd99f6612b5c (MD5) / Made available in DSpace on 2018-07-25T18:45:49Z (GMT). No. of bitstreams: 1
HILDÊNIO JOSÉ MACEDO - DISSERTAÇÃO PPGMAT 2011..pdf: 310824 bytes, checksum: ce96943d42ca2ee474b2fd99f6612b5c (MD5)
Previous issue date: 2011-05 / CNPq / Na presente dissertação, estudamos a existência e unicidade de solução para o
problema de Cauchy associado a equação de evolução não local (Baixar arquivo para ver a equação). Exibimos um funcional energia, associado a esta equação, e verificamos que ele satisfaz a propriedade de Lyapunov. Além disso, usamos este funcional para mostrar a existência e estabilidade local de uma solução de equilíbrio referida na literatura como instanton. / In this work we prove existence and uniqueness of solution for the Cauchy problem
corresponding to nonlocal evolution equation (Download file to see the equation). We exhibit an energy functional associated to this equation, and verify that it satisfies the Lyapunov property. Moreover, use this function to show the existence and local stability of a equilibrium solution reported in the literature as instanton.
|
24 |
Sobre o teorema de Campbell-Magaard e o problema de Cauchy na relatividadeSanomiya, Thais Akemi Tokubo 11 March 2016 (has links)
Submitted by Vasti Diniz (vastijpa@hotmail.com) on 2017-09-18T11:49:17Z
No. of bitstreams: 1
arquivototal.pdf: 2571485 bytes, checksum: 176b4eb5f639864aaef387d41330b286 (MD5) / Made available in DSpace on 2017-09-18T11:49:17Z (GMT). No. of bitstreams: 1
arquivototal.pdf: 2571485 bytes, checksum: 176b4eb5f639864aaef387d41330b286 (MD5)
Previous issue date: 2016-03-11 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / After the formulation of general relativity differential geometry has become an increasing important tool in theoretical physics. This is even more clear in the investigation of the so-called embedding space-time theories. In this work we focus our attention in the Cauchy problem. These have played a crucial role in our understanding of the mathematical structure of general relativity and embedding theories. We investigate the similarities and differences between the two approaches. We also study an extension of the Campbell-Magaard theorem and give two examples of both formalisms. / A geometria diferencial passou a ser uma ferramenta fundamental na fisica com o surgimento da relatividade geral. Em particular, destacamos sua importância na investigado das chamadas teorias de imersdo do espaco-tempo. Neste trabalho analisamos dois grandes formalismos fundamentados de forma direta ou indireta na teoria de imersões: o teorema de Campbell-Magaard e o problema de Cauchy para a relatividade geral. Tendo como principal objetivo tracar um paralelo entre esses dois formalismos, estudamos, nesta dissertacdo, o problema de valor inicial (pvi) para a relatividade geral mostrando que alem de admitir a formulae-do de pvi, a mesma é bem posta. Ademais, aplicamos este formalismo para o caso de uma metrica do tipo Friedmann-Robertson-Walker em (3+1). Estudamos tambem o teorema de Campbell-Magaard e sua extensdo para o espaco-tempo de Einstein e aplicamos este teorema para uma metrica do tipo de Sitter em (2+1).
|
25 |
Funções s-assintoticamente periódicas em espaços de Banach e aplicações à equações diferenciais funcionais / S-asymptotically periodic functions on Banach spaces and applications for functional differential equationsMichelle Fernanda Pierri Hernandez 13 April 2009 (has links)
Este trabalho está voltado para o estudo de uma classe de funções contínuas e limitadas f : [0; \'INFINITO\') \'SETA\' X para as quais existe \'omega\' \'> OU =\' 0 tal que \'lim IND. t\' \'SETA\' \'INFINITO\' (f(t + \'omega\') - f(t)) = 0. No decorrer do trabalho, chamaremos estas funções de S-assintoticamente \'omega\'-periódicas. Nós discutiremos propriedades qualitativas para estas funções e algumas relações entre este tipo de funções e a classe de funções assintoticamente \'omega\'-periódicas. Também estudaremos a existência de soluções fracas S-assintoticamente \'omega\'-periódicas para uma classe de primeira ordem de um problema de Cauchy abstrato bem como para algumas classes de equações diferenciais funcionais parciais neutras com retardo não limitado. Algumas aplicações para equações diferenciais parciais serão consideradas / This work is devoted to the study of the class of continuous and bounded functions f : [0 \'INFINIT\') \'ARROW\' X for which there exists \'omega\' > 0 such that \'limt IND.t \'ARROW\' \'INFINIT\'(f(t + \'omega\'!) - f(t)) = 0 (in the sequel called S-asymptotically !-periodic functions). We discuss qualitative properties and establish some relationships between this type of functions and the class of asymptotically \'omega\'-periodic functions. We also study the existence of S-asymptotically \'omega\'-periodic mild solutions for a first-order abstract Cauchy problem in Banach spaces and for some classes of abstract neutral functional differential equations with infinite delay. Furthermore, applications to partial differential equations are given
|
26 |
Teoria de semigrupos e aplicações a equações impulsivas com retardamento dependendo do estado / Semigroup theory and applications to impulsive differential equation with state-dependent delayGabriel Gonçalves União 17 April 2006 (has links)
Neste trabalho estudaremos a existência de soluções fracas para uma classe de equações diferenciais funcionais impulsivas com retardamento dependendo do estado modeladas na forma \'x POT. PRIME\'(t) = Ax(t) + f(t;\' x IND. p(t, xt)), t \'PERTENCE A\'I = [0,a], \'x IND. 0\' =\\varphi \'PERTENCE A\' B, \'DELTA\' \'x(t IND. i) = \'I IND.i\'i(\'x IND.i\'); i = 1, ...n, onde A é o gerador infinitesimal de um \'C IND. 0\'-semigrupo compacto de operadores lineares limitados (\'T\'(t))t \'. OU =\'0 definido em um espaço de Banach X; as fun»ções \'x IND. s\' : (- \'INFIINITO\', 0] \'SETA\' X, \'x IND. s\' ( teta\') = x(s + \'teta\'), estão em um espaço de fase B descrito axiomaticamente; f : I X B \'seta\' X, \'rô\' : I X B \'SETA\' ( - \'INFINITO\', a], \'I IND. i\' : B \'SETA\'X, i=1, ...n , são funções apropriadas; 0 < \'t IND.1\' <... < \'t IND. n\' < a são n¶umeros pré-fixados e o símbolo \'DELTA\'\'ksi\'(t) = \'Ksi\'(\'t POT. + ) - \'ksi\'( \'t POT. -). / In this work we stablish the existence of mild solutions for an impulsive abstract functional differential equation with state-dependent delay described in the form \'x POT. PRIME\'(t) = Ax(t) + f(t;\' x IND. p(t, xt)), t \'BELONGS\'I = [0,a], \'x IND. 0\' =\\varphi \'IS CONTAINED\' B, \'DELTA\' \'x(t IND. i) = \'I IND.i\'i(\'x IND.i\'); i = 1, ...n, where A is the infinitesimal generator of a compact \'C IND. 0\'-semigroup of bounded linear operators (\'T\'(t))t \'. OU =\'0 defined on a Banach space X; the functions \'x IND. s\': ( - INFINito, 0] \'SETA X, \'x IND. s\'(\'teta\') , belongs to some space B described axiomatically; f : I X B \'seta\' X, \'rô\' : I X B \'SETA\' ( - \'INFINITO\', a], \'I IND. i\' : B \'SETA\'X, i=1, ...n , são funções apropriadas; 0 < \'t IND.1\' <... < \'t IND. n\' < a são n¶umeros pré-fixados e o símbolo \'DELTA\'\'ksi\'(t) = \'Ksi\'(\'t POT. + ) - \'ksi\'( \'t POT. -).
|
Page generated in 0.0541 seconds