• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 1
  • 1
  • Tagged with
  • 15
  • 15
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Stavové zpracování síťových toků / Stateful Processing of Network Flows

Košek, Martin Unknown Date (has links)
Modern network traffic processing became a challenging task as there are increasing demands on network security devices. Packet-level processing is not sufficient for advanced network traffic analysis and it is necessary to design processing over entire network flows. Stateful processing in software does not offer enough performance for high-speed networks over 10 Gbps and therefore acceleration in hardware should be utilized. Currently there exists no universal platform for stateful processing in hardware and this task has to be implemented individually. Utilization of such platform significantly speed-up development of stateful network applications. This master thesis analyzes all aspects of stateful network processing platform design. Component based architecture increases platform flexibility and ability to optimize for chosen network applications.
12

IN-MEMORY COMPUTING WITH CMOS AND EMERGING MEMORY TECHNOLOGIES

Shubham Jain (7464389) 17 October 2019 (has links)
Modern computing workloads such as machine learning and data analytics perform simple computations on large amounts of data. Traditional von Neumann computing systems, which consist of separate processor and memory subsystems, are inefficient in realizing modern computing workloads due to frequent data transfers between these subsystems that incur significant time and energy costs. In-memory computing embeds computational capabilities within the memory subsystem to alleviate the fundamental processor-memory bottleneck, thereby achieving substantial system-level performance and energy benefits. In this dissertation, we explore a new generation of in-memory computing architectures that are enabled by emerging memory technologies and new CMOS-based memory cells. The proposed designs realize Boolean and non-Boolean computations natively within memory arrays.<br><div><br></div><div>For Boolean computing, we leverage the unique characteristics of emerging memories that allow multiple word lines within an array to be simultaneously enabled, opening up the possibility of directly sensing functions of the values stored in multiple rows using single access. We propose Spin-Transfer Torque Compute-in-Memory (STT-CiM), a design for in-memory computing with modifications to peripheral circuits that leverage this principle to perform logic, arithmetic, and complex vector operations. We address the challenge of reliable in-memory computing under process variations utilizing error detecting and correcting codes to control errors during CiM operations. We demonstrate how STT-CiM can be integrated within a general-purpose computing system and propose architectural enhancements to processor instruction sets and on-chip buses for in-memory computing. <br></div><div><br></div><div>For non-Boolean computing, we explore crossbar arrays of resistive memory elements, which are known to compactly and efficiently realize a key primitive operation involved in machine learning algorithms, i.e., vector-matrix multiplication. We highlight a key challenge involved in this approach - the actual function computed by a resistive crossbar can deviate substantially from the desired vector-matrix multiplication operation due to a range of device and circuit level non-idealities. It is essential to evaluate the impact of the errors introduced by these non-idealities at the application level. There has been no study of the impact of non-idealities on the accuracy of large-scale workloads (e.g., Deep Neural Networks [DNNs] with millions of neurons and billions of synaptic connections), in part because existing device and circuit models are too slow to use in application-level evaluation. We propose a Fast Crossbar Model (FCM) to accurately capture the errors arising due to crossbar non-idealities while being four-to-five orders of magnitude faster than circuit simulation. We also develop RxNN, a software framework to evaluate DNN inference on resistive crossbar systems. Using RxNN, we evaluate a suite of large-scale DNNs developed for the ImageNet Challenge (ILSVRC). Our evaluations reveal that the errors due to resistive crossbar non-idealities can degrade the overall accuracy of DNNs considerably, motivating the need for compensation techniques. Subsequently, we propose CxDNN, a hardware-software methodology that enables the realization of large-scale DNNs on crossbar systems with minimal degradation in accuracy by compensating for errors due to non-idealities. CxDNN comprises of (i) an optimized mapping technique to convert floating-point weights and activations to crossbar conductances and input voltages, (ii) a fast re-training method to recover accuracy loss due to this conversion, and (iii) low-overhead compensation hardware to mitigate dynamic and hardware-instance-specific errors. Unlike previous efforts that are limited to small networks and require the training and deployment of hardware-instance-specific models, CxDNN presents a scalable compensation methodology that can address large DNNs (e.g., ResNet-50 on ImageNet), and enables a common model to be trained and deployed on many devices. <br></div><div><br></div><div>For non-Boolean computing, we also propose TiM-DNN, a programmable hardware accelerator that is specifically designed to execute ternary DNNs. TiM-DNN supports various ternary representations including unweighted (-1,0,1), symmetric weighted (-a,0,a), and asymmetric weighted (-a,0,b) ternary systems. TiM-DNN is an in-memory accelerator designed using TiM tiles --- specialized memory arrays that perform massively parallel signed vector-matrix multiplications on ternary values per access. TiM tiles are in turn composed of Ternary Processing Cells (TPCs), new CMOS-based memory cells that function as both ternary storage units and signed scalar multiplication units. We evaluate an implementation of TiM-DNN in 32nm technology using an architectural simulator calibrated with SPICE simulation and RTL synthesis. TiM-DNN achieves a peak performance of 114 TOPs/s, consumes 0.9W power, and occupies 1.96mm2 chip area, representing a 300X improvement in TOPS/W compared to a state-of-the-art NVIDIA Tesla V100 GPU. In comparison to popular quantized DNN accelerators, TiM-DNN achieves 55.2X-240X and 160X-291X improvement in TOPS/W and TOPS/mm2, respectively.<br></div><div><br></div><div>In summary, the dissertation proposes new in-memory computing architectures as well as addresses the need for scalable modeling frameworks and compensation techniques for resistive crossbar based in-memory computing fabrics. Our evaluations show that in-memory computing architectures are promising for realizing modern machine learning and data analytics workloads, and can attain orders-of-magnitude improvement in system-level energy and performance over traditional von Neumann computing systems. <br></div>
13

Dataflow Processing in Memory Achieves Significant Energy Efficiency

Shelor, Charles F. 08 1900 (has links)
The large difference between processor CPU cycle time and memory access time, often referred to as the memory wall, severely limits the performance of streaming applications. Some data centers have shown servers being idle three out of four clocks. High performance instruction sequenced systems are not energy efficient. The execute stage of even simple pipeline processors only use 9% of the pipeline's total energy. A hybrid dataflow system within a memory module is shown to have 7.2 times the performance with 368 times better energy efficiency than an Intel Xeon server processor on the analyzed benchmarks. The dataflow implementation exploits the inherent parallelism and pipelining of the application to improve performance without the overhead functions of caching, instruction fetch, instruction decode, instruction scheduling, reorder buffers, and speculative execution used by high performance out-of-order processors. Coarse grain reconfigurable logic in an energy efficient silicon process provides flexibility to implement multiple algorithms in a low energy solution. Integrating the logic within a 3D stacked memory module provides lower latency and higher bandwidth access to memory while operating independently from the host system processor.
14

AL: Unified Analytics in Domain Specific Terms

Luong, Johannes, Habich, Dirk, Lehner, Wolfgang 13 June 2022 (has links)
Data driven organizations gather information on various aspects of their endeavours and analyze that information to gain valuable insights or to increase automatization. Today, these organizations can choose from a wealth of specialized analytical libraries and platforms to meet their functional and non-functional requirements. Indeed, many common application scenarios involve the combination of multiple such libraries and platforms in order to provide a holistic perspective. Due to the scattered landscape of specialized analytical tools, this integration can result in complex and hard to evolve applications. In addition, the necessary movement of data between tools and formats can introduce a serious performance penalty. In this article we present a unified programming environment for analytical applications. The environment includes AL, a programming language that combines concepts of various common analytical domains. Further, the environment also includes a flexible compilation system that uses a language-, domain-, and platform independent program intermediate representation to separate high level application logic and physical organisation. We provide a detailed introduction of AL, establish our program intermediate representation as a generally useful abstraction, and give a detailed explanation of the translation of AL programs into workloads for our experimental shared-memory processing engine.
15

Real-time Business Intelligence through Compact and Efficient Query Processing Under Updates

Idris, Muhammad 10 April 2019 (has links)
Responsive analytics are rapidly taking over the traditional data analytics dominated by the post-fact approaches in traditional data warehousing. Recent advancements in analytics demand placing analytical engines at the forefront of the system to react to updates occurring at high speed and detect patterns, trends and anomalies. These kinds of solutions find applications in Financial Systems, Industrial Control Systems, Business Intelligence and on-line Machine Learning among others. These applications are usually associated with Big Data and require the ability to react to constantly changing data in order to obtain timely insights and take proactive measures. Generally, these systems specify the analytical results or their basic elements in a query language, where the main task then is to maintain these results under frequent updates efficiently. The task of reacting to updates and analyzing changing data has been addressed in two ways in the literature: traditional business intelligence (BI) solutions focus on historical data analysis where the data is refreshed periodically and in batches, and stream processing solutions process streams of data from transient sources as flow (or set of flows) of data items. Both kinds of systems share the niche of reacting to updates (known as dynamic evaluation); however, they differ in architecture, query languages, and processing mechanisms. In this thesis, we investigate the possibility of a reactive and unified framework to model queries that appear in both kinds of systems. In traditional BI solutions, evaluating queries under updates has been studied under the umbrella of incremental evaluation of updates that is based on relational incremental view maintenance model and mostly focus on queries that feature equi-joins. Streaming systems, in contrast, generally follow the automaton based models to evaluate queries under updates, and they generally process queries that mostly feature comparisons of temporal attributes (e.g., timestamp attributes) along-with comparisons of non-temporal attributes over streams of bounded sizes. Temporal comparisons constitute inequality constraints, while non-temporal comparisons can either be equality or inequality constraints, hence these systems mostly process inequality joins. As starting point, we postulate the thesis that queries in streaming systems can also be evaluated efficiently based on the paradigm of incremental evaluation just like in BI systems in a main-memory model. The efficiency of such a model is measured in terms of runtime memory footprint and the update processing cost. To this end, the existing approaches of dynamic evaluation in both kind of systems present a trade-off between memory footprint and the update processing cost. More specifically, systems that avoid materialization of query (sub) results incur high update latency and systems that materialize (sub) results incur high memory footprint. We are interested in investigating the possibility to build a model that can address this trade-off. In particular, we overcome this trade-off by investigating the possibility of practical dynamic evaluation algorithm for queries that appear in both kinds of systems, and present a main-memory data representation that allows to enumerate query (sub) results without materialization and can be maintained efficiently under updates. We call this representation the Dynamic Constant Delay Linear Representation (DCLR). We devise DCLRs with the following properties: 1) they allow, without materialization, enumeration of query results with bounded-delay (and with constant delay for a sub-class of queries); 2) they allow tuple lookup in query results with logarithmic delay (and with constant delay for conjunctive queries with equi-joins only); 3) they take space linear in the size of the database; 4) they can be maintained efficiently under updates. We first study the DCLRs with the above-described properties for the class of acyclic conjunctive queries featuring equi-joins with projections and present the dynamic evaluation algorithm. Then, we present the generalization of thiw algorithm to the class of acyclic queries featuring multi-way theta-joins with projections. We devise DCLRs with the above properties for acyclic conjunctive queries, and the working of dynamic algorithms over DCLRs is based on a particular variant of join trees, called the Generalized Join Trees (GJTs) that guarantee the above-described properties of DCLRs. We define GJTs and present the algorithms to test a conjunctive query featuring theta-joins for acyclicity and to generate GJTs for such queries. To do this, we extend the classical GYO algorithm from testing a conjunctive query with equalities for acyclicity to test a conjunctive query featuring multi-way theta-joins with projections for acyclicity. We further extend the GYO algorithm to generate GJTs for queries that are acyclic. We implemented our algorithms in a query compiler that takes as input the SQL queries and generates Scala executable code – a trigger program to process queries and maintain under updates. We tested our approach against state of the art main-memory BI and CEP systems. Our evaluation results have shown that our DCLRs based approach is over an order of magnitude efficient than existing systems for both memory footprint and update processing cost. We have also shown that the enumeration of query results without materialization in DCLRs is comparable (and in some cases efficient) as compared to enumerating from materialized query results.

Page generated in 0.0724 seconds