• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The roles of RNA helicases and other ribosome biogenesis factors during small subunit maturation

Davila Gallesio, Jimena 27 August 2019 (has links)
No description available.
2

Caractérisation des propriétés d’un mutant de la protéine Rrp9p de la snoRNP U3 de levure Saccharomyces cerevisiae et mise en évidence d’un réseau de protéines au sein du complexe de maturation précoce des ARNr / Characterization of properties of a mutant of the protein Rrp9p of the yeast Saccharomyces snoRNP U3 cerevisiae and detection of a network of proteins in the early maturation of complex rRNA

Clerget, Guillaume 18 December 2015 (has links)
La biogenèse des ribosomes est un processus complexe et dynamique requérant l’intervention d’une multitude de facteurs d’assemblage et de maturation pour permettre la maturation du pré-ARNr et l’assemblage des protéines ribosomiques. Chez les eucaryotes, la biogenèse de la petite sous-unité ribosomique 40S, débute dans le nucléole par la transcription d’un long précurseur contenant 3 des 4 futurs ARNr matures. Le pré-ARNr 18S est modifié par un ensemble de snoRNP à boîtes C/D et H/ACA et libéré par une série de clivages précoces au niveau des sites A0, A1 et A2. Ces clivages se déroulent au sein d’un macro-complexe, le SSU-processome. Celui-ci s’assemble de manière séquentielle à l’extrémité 5’ du pré-ARNr et est composé d’une multitude de facteurs intervenant dans la maturation, notamment de la snoRNP U3, une snoRNP à boîtes C/D qui joue un rôle de chaperon du pré-ARNr. En effet, le snoARN U3 est impliqué dans la formation de 5 appariements avec le pré-ARNr permettant de positionner correctement les sites de clivages A0, A1 et A2. En plus des 4 protéines cœur retrouvées au sein des snoRNP à boîtes C/D, la snoRNP U3 possède une protéine supplémentaire essentielle à la viabilité cellulaire, Rrp9p. En C-terminal, Rrp9 présente un enchainement de 7 domaines WD40 s’organisant en une structure « beta propeller ». Pour définir le rôle essentiel de cette protéine, nous avons généré des mutants et testé leur fonction. Nous avons ainsi pu montrer que le résidu R289 de Rrp9p est important pour les étapes de clivages précoces du pré-ARNr aux sites A1 et A2. De plus, nous avons identifié de nouveaux partenaires de la protéine Rrp9p au sein du processome et montré que le résidu R289 est impliqué dans une interaction directe avec le facteur Rrp36p. Lorsque ce résidu est muté, certains des défauts de croissance cellulaire liés à la stabilisation des appariements établis entre le pré-ARNr et le snoARN U3 par mutation du snoARN U3 sont fortement renforcés, montrant un lien fonctionnel entre Rrp9p et ces appariements. Nous avons mis en évidence un réseau d’interaction au sein du processome impliquant les protéines Rrp9p, Rrp36p, Sgd1p et Rrp5p : Rrp9p interagit avec Rrp36p et Sgd1p, et ces deux dernières interagissent ensemble, ainsi qu’avec Rrp5p. Les domaines responsables de ces interactions ont été étudiés / Ribosome biogenesis is a complex and dynamic process requiring several assembly and maturation factors needed for processing of the pre-rRNA and assembly of the ribosomal protein. In eukarya, biogenesis of the 40S small subunit starts in the nucleolus with the transcription of a long pre-rRNA, containing 3 out of the 4 future rRNAs. The 18S pre-rRNA is modified by several C/D or H/ACA box snoRNPs and processed by endonucleolytic cleavages at sites A0, A1 and A2 sites. These early cleavages occur within a huge complex termed the SSU-processome. The processome assembles at the 5’ extremity of the pre-rRNA, and contains multiple factors, including the U3 snoRNP, a C/D box snoRNP chaperoning the pre-rRNA. Indeed, the U3 snoRNA is involved in formation of 5 intermolecular helix with the pre-rRNA, which defines the A0, A1 and A2 cleavage sites. In addition to the four C/D box snoRNP core proteins, the U3 snoRNP contains additional protein, Rrp9p, required for cell viability. The Rrp9p C-terminal extremity folds into a beta propeller structure. To try to decipher the Rrp9p role, we mutated several surface residues of the beta propeller protein and the effects of the mutations on cell growth were tested. Through this approach, we found that the R289 residue is important for the maturation events at A1 and A2 sites. Moreover, we identified new protein partners of Rrp9p within the processome and showed that R289 residue is involved in a direct interaction with Rrp36p. We identified a network of protein-protein interactions including Rrp9p, Rrp36p, Sgd1p and Rrp5p : Rrp9p interacts with Rrp36p and Sgd1p, Rrp36p and Sgd1p interact together and with Rrp5p. Some of the protein domains involved in the interactions were identified. In addition, the R289A mutation in Rrp9p has a strong negative effect on growth with mutations in U3 snoRNA that destabilize the U3 snoRNA/pre-rRNA interaction
3

Estudo das interações de Utp25 com outros componentes do complexo SSU processomo / Study of the interactions between Utp25 and other proteins of the SSU processome complex

Marques da Cruz, Ana Maria Martins 15 July 2016 (has links)
A síntese de ribossomos é um dos principais processos celulares e na levedura Saccharomyces cerevisiae são necessários 75 snoRNAs e mais de 200 proteínas não-ribossomais para que o ribossomo seja corretamente formado. Para o processamento do precursor dos RNAs ribossomais, chamado pré-rRNA 35S, ocorre o pareamento deste com o U3 snoRNA e outros snoRNAs e diversas proteínas se associam de maneira orquestrada e transitória, formando o complexo SSU processomo. Tal complexo é necessário para o processamento da região 5\' do pré-rRNA 35S e para a correta montagem e maturação da subunidade menor ribossomal. Estudos anteriores do nosso laboratório identificaram a proteína nucleolar Utp25, essencial em S. cerevisiae, como integrante do complexo SSU processomo. Foi demonstrado que a depleção de Utp25 afeta a formação da subunidade menor ribossomal e que Utp25 interage com as proteínas Sas10 e Mpp10, componentes do SSU processomo, além de Utp25 co-imunoprecipitar o snoRNA U3. A partir desses dados, este trabalho teve como objetivo identificar interações da proteína Utp25 com outros componentes do complexo SSU processomo e investigar o papel de tais interações na formação e funcionamento do mesmo. Para purificação do complexo SSU processomo nós utilizamos o método Tandem Affinity Purification-tag (TAP-tag) utilizando TAP-Utp25 como isca. Após análise do purificado resultante por espectrometria de massas, obtivemos como resultado as proteínas Rrp5, Snu13 e Nop56, sendo as duas últimas pertencentes ao subcomplexo U3 snoRNP. / The ribosome synthesis is one of the main cellular processes and in the yeast Saccharomyces cerevisiae 75 snoRNAs and more than 200 non-ribosomal proteins are involved in ribosome maturation. During processing, the pre-rRNA 35S base pairs with the U3 snoRNA and other snoRNAs and several proteins associate, forming the SSU processome complex. This complex is required for the processing of the pre-rRNA 35S 5\' region and for the correct assembly and maturation of the ribosome small subunit. Previous studies from our laboratory identified the nucleolar protein Utp25, essential in S. cerevisiae, as a member of the SSU processome complex. Utp25 depletion affects small ribosomal subunit formation. Utp25 interacts with proteins Sas10 and Mpp10, components of the SSU processome, and Utp25 co-immunoprecipitates U3 snoRNA. From these data, this study aimed to identify Utp25 interactions with other components of the SSU processome complex and to investigate the role of these interactions in this complex formation and function. For the SSU processome complex purification we used the Tandem Affinity Purification-tag method (TAP-tag) and TAP-Utp25 as the bait. After the resulting purified analysis by mass spectrometry, we obtained as results the Rrp5, Snu13 and Nop56 proteins, the last two being U3 snoRNP subcomplex components.
4

Estudo das interações de Utp25 com outros componentes do complexo SSU processomo / Study of the interactions between Utp25 and other proteins of the SSU processome complex

Ana Maria Martins Marques da Cruz 15 July 2016 (has links)
A síntese de ribossomos é um dos principais processos celulares e na levedura Saccharomyces cerevisiae são necessários 75 snoRNAs e mais de 200 proteínas não-ribossomais para que o ribossomo seja corretamente formado. Para o processamento do precursor dos RNAs ribossomais, chamado pré-rRNA 35S, ocorre o pareamento deste com o U3 snoRNA e outros snoRNAs e diversas proteínas se associam de maneira orquestrada e transitória, formando o complexo SSU processomo. Tal complexo é necessário para o processamento da região 5\' do pré-rRNA 35S e para a correta montagem e maturação da subunidade menor ribossomal. Estudos anteriores do nosso laboratório identificaram a proteína nucleolar Utp25, essencial em S. cerevisiae, como integrante do complexo SSU processomo. Foi demonstrado que a depleção de Utp25 afeta a formação da subunidade menor ribossomal e que Utp25 interage com as proteínas Sas10 e Mpp10, componentes do SSU processomo, além de Utp25 co-imunoprecipitar o snoRNA U3. A partir desses dados, este trabalho teve como objetivo identificar interações da proteína Utp25 com outros componentes do complexo SSU processomo e investigar o papel de tais interações na formação e funcionamento do mesmo. Para purificação do complexo SSU processomo nós utilizamos o método Tandem Affinity Purification-tag (TAP-tag) utilizando TAP-Utp25 como isca. Após análise do purificado resultante por espectrometria de massas, obtivemos como resultado as proteínas Rrp5, Snu13 e Nop56, sendo as duas últimas pertencentes ao subcomplexo U3 snoRNP. / The ribosome synthesis is one of the main cellular processes and in the yeast Saccharomyces cerevisiae 75 snoRNAs and more than 200 non-ribosomal proteins are involved in ribosome maturation. During processing, the pre-rRNA 35S base pairs with the U3 snoRNA and other snoRNAs and several proteins associate, forming the SSU processome complex. This complex is required for the processing of the pre-rRNA 35S 5\' region and for the correct assembly and maturation of the ribosome small subunit. Previous studies from our laboratory identified the nucleolar protein Utp25, essential in S. cerevisiae, as a member of the SSU processome complex. Utp25 depletion affects small ribosomal subunit formation. Utp25 interacts with proteins Sas10 and Mpp10, components of the SSU processome, and Utp25 co-immunoprecipitates U3 snoRNA. From these data, this study aimed to identify Utp25 interactions with other components of the SSU processome complex and to investigate the role of these interactions in this complex formation and function. For the SSU processome complex purification we used the Tandem Affinity Purification-tag method (TAP-tag) and TAP-Utp25 as the bait. After the resulting purified analysis by mass spectrometry, we obtained as results the Rrp5, Snu13 and Nop56 proteins, the last two being U3 snoRNP subcomplex components.

Page generated in 0.0286 seconds