• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 188
  • 49
  • 46
  • 12
  • 12
  • 10
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • Tagged with
  • 379
  • 112
  • 64
  • 63
  • 62
  • 54
  • 53
  • 45
  • 43
  • 43
  • 39
  • 39
  • 36
  • 33
  • 32
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Energy Functions for Early Vision and Analog Networks

Yuille, Alan 01 November 1987 (has links)
This paper describes attempts to model the modules of early vision in terms of minimizing energy functions, in particular energy functions allowing discontinuities in the solution. It examines the success of using Hopfield-style analog networks for solving such problems. Finally it discusses the limitations of the energy function approach.
42

Opto-electronic class AB microwave power amplifier using photoconductive switch technology

Huang, Chih-Jung, January 2006 (has links)
Thesis (Ph.D.)--University of Missouri-Columbia, 2006. / The entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file viewed on (April 26, 2007) Vita. Includes bibliographical references.
43

Concurrent Implementation of Packet Processing Algorithms on Network Processors

Groves, Mark January 2006 (has links)
Network Processor Units (NPUs) are a compromise between software-based and hardwired packet processing solutions. While slower than hardwired solutions, NPUs have the flexibility of software-based solutions, allowing them to adapt faster to changes in network protocols. <br /><br /> Network processors have multiple processing engines so that multiple packets can be processed simultaneously within the NPU. In addition, each of these processing engines is multi-threaded, with special hardware support built in to alleviate some of the cost of concurrency. This hardware design allows the NPU to handle multiple packets concurrently, so that while one thread is waiting for a memory access to complete, another thread can be processing a different packet. By handling several packets simultaneously, an NPU can achieve similar processing power as traditional packet processing hardware, but with greater flexibility. <br /><br /> The flexibility of network processors is also one of the disadvantages associated with them. Programming a network processor requires an in-depth understanding of the hardware as well as a solid foundation in concurrent design and programming. This thesis explores the challenges of programming a network processor, the Intel IXP2400, using a single-threaded packet scheduling algorithm as a sample case. The algorithm used is a GPS approximation scheduler with constant time execution. The thesis examines the process of implementing the algorithm in a multi-threaded environment, and discusses the scalability and load-balancing aspects of such an algorithm. In addition, optimizations are made to the scheduler implementation to improve the potential concurrency. The synchronization primitives available on the network processor are also examined, as they play a significant part in minimizing the overhead required to synchronize memory accesses by the algorithm.
44

EXTREME PROCESSORS FOR EXTREME PROCESSING : STUDY OF MODERATELY PARALLEL PROCESSORS

Bangsgaard, Christian, Erlandsson, Tobias, Örning, Alexander January 2005 (has links)
Future radars require more flexible and faster radar signal processing chain than commercial radars of today. This means that the demands on the processors in a radar signal system, and the desire to be able to compute larger amount of data in lesser time, is constantly increasing. This thesis focuses on commercial micro-processors of today that can be used for Active Electronically Scanned Array Antenna (AESA) based radar, their physical size, power consumption and performance must to be taken into consideration. The evaluation is based on theoretical comparisons among some of the latest processors provided by PACT, PicoChip, Intrinsity, Clearspeed and IBM. The project also includes a benchmark made on PowerPC G5 from IBM, which shows the calculation time for different Fast Fourier Transforms (FFTs). The benchmark on the PowerPC G5 shows that it is up to 5 times faster than its predecessor PowerPC G4 when it comes to calculate FFTs, but it only consumes twice the power. This is due to the fact that PowerPC G5 has a double word length and almost twice the frequency. Even if this seems as a good result, all the PowerPC´s that are needed to reach the performance for an AESA radar chain would consume too much power. The thesis ends up with a discussion about the traditional architectures and the new multi-core architectures. The future belongs with almost certainty to some kind of multicore processor concept, because of its higher performance per watt. But the traditional single core processor is probably the best choice for more moderate-performance systems of today, if you as developer looking for a traditional way of programing processors.
45

Concurrent Implementation of Packet Processing Algorithms on Network Processors

Groves, Mark January 2006 (has links)
Network Processor Units (NPUs) are a compromise between software-based and hardwired packet processing solutions. While slower than hardwired solutions, NPUs have the flexibility of software-based solutions, allowing them to adapt faster to changes in network protocols. <br /><br /> Network processors have multiple processing engines so that multiple packets can be processed simultaneously within the NPU. In addition, each of these processing engines is multi-threaded, with special hardware support built in to alleviate some of the cost of concurrency. This hardware design allows the NPU to handle multiple packets concurrently, so that while one thread is waiting for a memory access to complete, another thread can be processing a different packet. By handling several packets simultaneously, an NPU can achieve similar processing power as traditional packet processing hardware, but with greater flexibility. <br /><br /> The flexibility of network processors is also one of the disadvantages associated with them. Programming a network processor requires an in-depth understanding of the hardware as well as a solid foundation in concurrent design and programming. This thesis explores the challenges of programming a network processor, the Intel IXP2400, using a single-threaded packet scheduling algorithm as a sample case. The algorithm used is a GPS approximation scheduler with constant time execution. The thesis examines the process of implementing the algorithm in a multi-threaded environment, and discusses the scalability and load-balancing aspects of such an algorithm. In addition, optimizations are made to the scheduler implementation to improve the potential concurrency. The synchronization primitives available on the network processor are also examined, as they play a significant part in minimizing the overhead required to synchronize memory accesses by the algorithm.
46

Exploiting network processors for low latency, high throughput, rate-based sensor update delivery

Swenson, Kim Christian. January 2009 (has links) (PDF)
Thesis (M.S. in computer science)--Washington State University, December 2009. / Title from PDF title page (viewed on Feb. 9, 2010). "School of Electrical Engineering and Computer Science." Includes bibliographical references (p. 92-94).
47

Network processors and utilizing their features in a multicast design /

Diler, Timur. January 2004 (has links) (PDF)
Thesis (M.S. in Computer Science and M.S. in Electrical Engineering)--Naval Postgraduate School, March 2004. / Thesis advisor(s): Su Wen, Jon Butler. Includes bibliographical references (p. 53-54). Also available online.
48

Design and analysis of architectures for programmable network processing systems /

Crowley, Patrick January 2003 (has links)
Thesis (Ph. D.)--University of Washington, 2003. / Vita. Includes bibliographical references (p. 134-142).
49

Coordinated power management in heterogeneous processors

Paul, Indrani 08 June 2015 (has links)
Coordinated Power Management in Heterogeneous Processors Indrani Paul 164 pages Directed by Dr. Sudhakar Yalamanchili With the end of Dennard scaling, the scaling of device feature size by itself no longer guarantees sustaining the performance improvement predicted by Moore’s Law. As industry moves to increasingly small feature sizes, performance scaling will become dominated by the physics of the computing environment and in particular by the transient behavior of interactions between power delivery, power management and thermal fields. Consequently, performance scaling must be improved by managing interactions between physical properties, which we refer to as processor physics, and system level performance metrics, thereby improving the overall efficiency of the system. The industry shift towards heterogeneous computing is in large part motivated by energy efficiency. While such tightly coupled systems benefit from reduced latency and improved performance, they also give rise to new management challenges due to phenomena such as physical asymmetry in thermal and power signatures between the diverse elements and functional asymmetry in performance. Power-performance tradeoffs in heterogeneous processors are determined by coupled behaviors between major components due to the i) on-die integration, ii) programming model and the iii) processor physics. Towards this end, this thesis demonstrates the needs for coordinated management of functional and physical resources of a heterogeneous system across all major compute and memory elements. It shows that the interactions among performance, power delivery and different types of coupling phenomena are not an artifact of an architecture instance, but is fundamental to the operation of many core and heterogeneous architectures. Managing such coupling effects is a central focus of this dissertation. This awareness has the potential to exert significant influence over the design of future power and performance management algorithms. The high-level contributions of this thesis are i) in-depth examination of characteristics and performance demands of emerging applications using hardware measurements and analysis from state-of-the-art heterogeneous processors and high-performance GPUs, ii) analysis of the effects of processor physics such as power and thermals on system level performance, iii) identification of a key set of run-time metrics that can be used to manage these effects, and iv) development and detailed evaluation of online coordinated power management techniques to optimize system level global metrics in heterogeneous CPU-GPU-memory processors.
50

Operating System Techniques for Reducing Processor State Pollution

Soares, Livio 31 August 2012 (has links)
Application performance on modern processors has become increasingly dictated by the use of on-chip structures, such as caches and look-aside buffers. The hierarchical (multi-leveled) design of processor structures, the ubiquity of multicore processor architectures, as well as the increasing relative cost of accessing memory have all contributed to this condition. Our thesis is that operating systems should provide services and mechanisms for applications to more efficiently utilize on-chip processor structures. As such, this dissertation demonstrates how the operating system can improve processor efficiency of applications through specific techniques. Two operating system services are investigated: (1) improving secondary and last-level cache utilization through a run-time cache filtering technique, and (2) improving the processor efficiency of system intensive applications through a new exception-less system call mechanism. With the first mechanism, we introduce the concept of a software pollute buffer and show that it can be used effectively at run-time, with assistance from commodity hardware performance counters, to reduce pollution of secondary on-chip caches. In the second mechanism, we are able to decouple application and operating system execution, showing the benefits of the reduced interference in various processor components such as the first level instruction and data caches, second level caches and branch predictor. We show that exception-less system calls are particularly effective on modern multicore processors. We explore two ways for applications to use exception-less system calls. The first way, which is completely transparent to the application, uses multi-threading to hide asynchronous communication between the operating system kernel and the application. In the second way, we propose that applications can directly use the exception-less system call interface by designing programs that follow an event-driven architecture.

Page generated in 0.055 seconds