• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

L'effet du traumatisme cranio-cérébral et du vieillissement sur les mécanismes neuronaux de l'encodage et la récupération épisodique

Fortin, Julie 13 December 2023 (has links)
Les troubles de la mémoire épisodique sont fréquents à la suite d'un traumatisme cranio-cérébral (TCC). De même, le vieillissement est caractérisé par un déclin de la mémoire épisodique. Conséquemment, l'effet synergique du vieillissement et du TCC pourrait exacerber les atteintes de la mémoire épisodique à la suite d'un TCC chez les personnes âgées. La technique des potentiels évoqués (PE) est une méthode ayant la capacité de mettre en évidence des dysfonctionnements neuronaux subtils pouvant être à l'origine de troubles de la mémoire épisodique. Jusqu'à présent, aucune étude n'a porté sur les corrélats neuronaux de la mémoire épisodique à l'aide de la méthode des potentiels évoqués, lors de l'utilisation de stratégies d'encodage par des personnes âgées ayant subi un TCC. Pour combler cette lacune, la présente thèse comporte des travaux menés sur les PE lors de l'encodage (étude 1) et de la récupération épisodique (étude 2) auprès de personnes âgées saines et ayant subi un TCC lors d'un paradigme de mémoire épisodique dans lequel le niveau d'organisation sémantique est manipulé en encodage. Les résultats comportementaux obtenus au paradigme de mémoire montrent des déficits mnésiques à la suite d'un TCC. Les résultats électrophysiologiques de l'encodage (étude 1) montrent un dysfonctionnement, chez les personnes âgées ayant subi un TCC, des bases neuronales sous-tendant les processus attentionnels et associatifs impliqués dans les stratégies mnésiques. L'altération de ces processus pourrait être attribuable à des déficits des fonctions exécutives. Les résultats suggèrent également qu'un TCC exacerbe les difficultés à auto-initier des stratégies mnésiques. Les résultats électrophysiologiques de la récupération (étude 2) suggèrent que le TCC induit une altération des mécanismes neuronaux de la familiarité et de la remémoration consciente. De plus, la présence d'un old/new effect précoce (P200, 150-300 ms) et d'un late frontal old/new effect uniquement chez le groupe témoin révèle que le TCC induit un déficit d'allocation des ressources attentionnelles et de la mémoire de travail nécessaire à la récupération. Les résultats de ces deux études permettent de décrire les effets couplés du vieillissement et du TCC sur la mémoire épisodique, et montrent que le TCC entraîne des dysfonctionnements neuronaux de l'encodage et de la récupération à l'origine des troubles de la mémoire épisodique. Ces travaux permettent d'amorcer une réflexion sur la prise en charge des patients cérébrolésés âgés et d'orienter des stratégies de récupération qui prennent en considération les sphères de la mémoire épisodique altérées.
2

Influence of the dentritic morphology on electrophysiological responses of thalamocortical neurons

Zomorrodi Moghaddam, Reza 18 April 2018 (has links)
Les neurones thalamiques de relai ont un rôle exclusif dans la transformation et de transfert de presque toute l'information sensorielle dans le cortex. L'intégration synaptique et la réponse électrophysiologique des neurones thalamiques de relai sont déterminées non seulement par l’état du réseau impliqué, mais ils sont également contrôlés par leurs propriétés intrinsèques tels les divers canaux ioniques voltage-dépendants ainsi que l’arborisation dendritique élaboré. Par conséquent, investiguer sur le profil complexe de morphologie dendritique et sur les propriétés dendritiques actives révèle des renseignements importants sur la fonction d'entrée-sortie de neurones thalamiques de relai. Dans cette étude, nous avons reconstruit huit neurones thalamocorticaux (TC) du noyau VPL de chat adulte. En se basant sur ces données morphologiques complètes, nous avons développé plusieurs modèles multicompartimentaux afin de trouver un rôle potentiellement important des arbres dendritiques des neurones de TC dans l'intégration synaptique et l’intégration neuronale. L'analyse des caractéristiques morphologiques des neurones TC accordent des valeurs précises à des paramètres géométriques semblables ou différents de ceux publiés antérieurement. En outre, cette analyse fait ressortir de tous nouveaux renseignements concernant le patron de connectivité entre les sections dendritiques telles que l'index de l'asymétrie et la longueur de parcours moyen (c'est-à-dire, les paramètres topologiques). Nous avons confirmé l’étendue des valeurs rapportée antérieurement pour plusieurs paramètres géométriques tels que la zone somatique (2956.24±918.89 m2), la longueur dendritique totale (168017.49±4364.64 m) et le nombre de sous-arbres (8.3±1.5) pour huit neurones TC. Cependant, contrairement aux données rapportées antérieurement, le patron de ramification dendritique (avec des cas de bifurcation 98 %) ne suit pas la règle de puissance de Rall 3/2 pour le ratio géométrique (GR), et la valeur moyenne de GR pour un signal de propagation est 2,5 fois plus grande que pour un signal rétropropagé. Nous avons également démontré une variabilité significative dans l'index de symétrie entre les sous-arbres de neurones TC, mais la longueur du parcours moyen n'a pas montré une grande variation à travers les ramifications dendritiques des différents neurones. Nous avons examiné la conséquence d’une distribution non-uniforme des canaux T le long de l'arbre dendritique sur la réponse électrophysiologique émergeante, soit le potentiel Ca 2+ à seuil bas (low-threshold calcium spike, LTS) des neurones TC. En appliquant l'hypothèse du «coût minimal métabolique», nous avons constaté que le neurone modélisé nécessite un nombre minimal de canaux-T pour générer un LTS, lorsque les canaux-T sont situés dans les dendrites proximales. Dans la prochaine étude, notre modèle informatique a illustré l'étendue d'une rétropropagation du potentiel d'action et de l'efficacité de la propagation vers des PPSEs générés aux branches dendritiques distales. Nous avons démontré que la propagation dendritique des signaux électriques est fortement contrôlée par les paramètres morphologiques comme illustré par les différents paliers de polarisation obtenus par un neurone à équidistance de soma pendant la propagation et la rétropropagation des signaux électriques. Nos résultats ont révélé que les propriétés géométriques (c.-à-d. diamètre, GR) ont un impact plus fort sur la propagation du signal électrique que les propriétés topologiques. Nous concluons que (1) la diversité dans les propriétés morphologiques entre les sous-arbres d'un seul neurone TC donne une capacité spécifique pour l'intégration synaptique et l’intégration neuronale des différents dendrites, (2) le paramètre géométrique d'un arbre dendritique fournissent une influence plus élevée sur le contrôle de l'efficacité synaptique et l'étendue du potentiel d'action rétropropagé que les propriétés topologiques, (3) neurones TC suivent le principe d’optimisation pour la distribution de la conductance voltage-dépendant sur les arbres dendritiques. / Thalamic relay neurons have an exclusive role in processing and transferring nearly all sensory information into the cortex. The synaptic integration and the electrophysiological response of thalamic relay neurons are determined not only by a state of the involved network, but they are also controlled by their intrinsic properties; such as diverse voltage-dependent ionic channels as well as by elaborated dendritic arborization. Therefore, investigating the complex pattern of dendritic morphology and dendritic active properties reveals important information on the input-output function of thalamic relay neurons. In this study, we reconstructed eight thalamocortical (TC) neurons from the VPL nucleus of adult cats. Based on these complete morphological data, we developed several multi-compartment models in order to find a potentially important role for dendritic trees of TC neurons in the synaptic integration and neuronal computation. The analysis of morphological features of TC neurons yield precise values of geometrical parameters either similar or different from those previously reported. In addition, this analysis extracted new information regarding the pattern of connectivity between dendritic sections such as asymmetry index and mean path length (i.e., topological parameters). We confirmed the same range of previously reported value for several geometric parameters such as the somatic area (2956.24±918.89 m2), the total dendritic length (168017.49±4364.64 m) and the number of subtrees (8.3±1.5) for eight TC neurons. However, contrary to previously reported data, the dendritic branching pattern (with 98% bifurcation cases) does not follow Rall’s 3/2 power rule for the geometrical ratio (GR), and the average GR value for a forward propagation signal was 2.5 times bigger than for a backward propagating signal. We also demonstrated a significant variability in the symmetry index between subtrees of TC neurons, but the mean path length did not show a large variation through the dendritic arborizations of different neurons. We examined the consequence of non-uniform distribution of T-channels along the dendritic tree on the prominent electrophysiological response, the low-threshold Ca2+ spike (LTS) of TC neurons. By applying the hypothesis of “minimizing metabolic cost”, we found that the modeled neuron needed a minimum number of T-channels to generate low-threshold Ca2+ spike (LTS), when T-channels were located in proximal dendrites. In the next study, our computational model illustrated the extent of an action potential back propagation and the efficacy of forward propagation of EPSPs arriving at the distal dendritic branches. We demonstrated that dendritic propagation of electrical signals is strongly controlled by morphological parameters as shown by different levels of polarization achieved by a neuron at equidistance from the soma during back and forward propagation of electrical signals. Our results revealed that geometrical properties (i.e. diameter, GR) have a stronger impact on the electrical signal propagation than topological properties. We conclude that (1) diversity in the morphological properties between subtrees of a single TC neuron lead to a specific ability for synaptic integration and neuronal computation of different dendrites, (2) geometrical parameter of a dendritic tree provide higher influence on the control of synaptic efficacy and the extent of the back propagating action potential than topological properties, (3) TC neurons follow the optimized principle for distribution of voltage-dependent conductance on dendritic trees.

Page generated in 0.1075 seconds