• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Études combinatoires du tableau d'Euler sur les produits en couronne

Faliharimalala, Hilarion 31 March 2010 (has links) (PDF)
Au cours des deux dernières décennies, des travaux actifs ont été menés pour étendre des résultats classiques liés au groupe symétrique à d'autres groupes plus généraux. Cette thèse a pour objectif d'étendre aux produits en couronne les résultats concernant le tableau de différence d'Euler. Elle est divisée en cinq chapitres. Le tableau de différence d'Euler lié à la suite {n!} conduit naturellement à la formule du nombre de dérangements. Nous étudions dans les deux premiers chapitres, le tableau de différence d'Euler associé à la suite {rnn!} et la généralisation du problème de dérangements. Pour les coefficients de ce dernier tableau, nous donnons des interprétations combinatoires en termes de k-successions sur les produits en couronne. Clarke et al. ont introduit un q-analogue du tableau de différence d'Euler sur le groupe symétrique. Dans le troisième chapitre, nous étendons leurs résultats sur les produits en couronne. En généralisant leur bijection, nous montrons que " (fix, exc, fmaj) " et " (fix, exc, fmaf) " sont équidistribués sur les produits en couronne où "fmaf" est une nouvelle statistique mahonienne. D'autre part, Foata et Han ont récemment construit deux transformations. Nous prouvons dans le quatrième chapitre que ses bijections fournissent une factorisation de la bijection de Clarke et al.. Dans le cinquième chapitre nous donnons une extension de la seconde transformation fondamentale de Foata sur les mots r-colorés. Nous prouvons l'équidistribution sur les produits en couronne de " (fmaj , des*) " et " (finv , col) " où " col " est la somme des couleurs et " des* " une nouvelle statistique.
2

Études combinatoires du tableau d’Euler sur les produits en couronne / Combinatorial studies of Euler's table on wreath products

Faliharimalala, Hilarion 31 March 2010 (has links)
Au cours des deux dernières décennies, des travaux actifs ont été menés pour étendre des résultats classiques liés au groupe symétrique à d'autres groupes plus généraux. Cette thèse a pour objectif d’étendre aux produits en couronne les résultats concernant le tableau de différence d’Euler. Elle est divisée en cinq chapitres. Le tableau de différence d’Euler lié à la suite {n!} conduit naturellement à la formule du nombre de dérangements. Nous étudions dans les deux premiers chapitres, le tableau de différence d’Euler associé à la suite {rnn!} et la généralisation du problème de dérangements. Pour les coefficients de ce dernier tableau, nous donnons des interprétations combinatoires en termes de k-successions sur les produits en couronne. Clarke et al. ont introduit un q-analogue du tableau de différence d’Euler sur le groupe symétrique. Dans le troisième chapitre, nous étendons leurs résultats sur les produits en couronne. En généralisant leur bijection, nous montrons que « (fix, exc, fmaj) » et « (fix, exc, fmaf) » sont équidistribués sur les produits en couronne où «fmaf» est une nouvelle statistique mahonienne. D’autre part, Foata et Han ont récemment construit deux transformations. Nous prouvons dans le quatrième chapitre que ses bijections fournissent une factorisation de la bijection de Clarke et al.. Dans le cinquième chapitre nous donnons une extension de la seconde transformation fondamentale de Foata sur les mots r-colorés. Nous prouvons l’équidistribution sur les produits en couronne de « (fmaj , des*) » et « (finv , col) » où « col » est la somme des couleurs et « des* » une nouvelle statistique. / In the last two decades, much effort has been made to extend various enumerative results on symmetric groups to other more general groups. The main objective of this thesis is to extend to wreath products the results that concern the Euler's difference table. It is divided into five chapters. Euler's difference table associated to the sequence {n!} leads naturally to the counting formula for the derangements. In the first two chapters, we study Euler's difference table associated to the sequence {rnn!} and the generalized derangement problem. For the coefficients appearing in the later table, we give the combinatorial interpretations in terms of k-successions on wreath products. Clarke et al. introduced a q-analogue of Euler's difference table on symmetric group. In the third chapter, we extend their results to wreath products. By generalizing their bijection, we prove the equidistribution of the triple statistics “(fix, exc, fmaj)” and “(fix, exc, fmaf)” on wreath products, where “fmaf” is a new mahonian statistic on wreath products. On the other hand, Foata and Han have recently constructed two new transformations. We prove in fourth chapter that their two bijections provide a factorization of Clarke et al.'s bijection. In the fifth chapter we give an extension of Foata’s second fundamental transformation on r-colored words. We show that the bistatistics “(fmaj , des*)” and “(finv , col)” are equidistributed on wreath products, where “col” is the sum of color and “des*” a new statistic.
3

Cubical-like geometry of quasi-median graphs and applications to geometric group theory / Géométrie cubique des graphes quasi-médians et applications à la théorie géométrique des groupes

Genevois, Anthony 01 December 2017 (has links)
La classe des graphes quasi-médians est une généralisation des graphes médians, ou de manière équivalente, des complexes cubiques CAT(0). L'objectif de cette thèse est d'introduire ces graphes dans le monde de la théorie géométrique des groupes. Dans un premier temps, nous étendons la notion d'hyperplan définie dans les complexes cubiques CAT(0), et nous montrons que la géométrie d'un graphe quasi-médian se réduit essentiellement à la combinatoire de ses hyperplans. Dans la deuxième partie de notre texte, qui est le cœur de la thèse, nous exploitons la structure particulière des hyperplans pour démontrer des résultats de combinaison. L'idée principale est que si un groupe agit d'une bonne manière sur un graphe quasi-médian de sorte que les stabilisateurs de cliques satisfont une certaine propriété P de courbure négative ou nulle, alors le groupe tout entier doit satisfaire P également. Les propriétés que nous considérons incluent : l'hyperbolicité (éventuellement relative), les compressions lp (équivariantes), la géométrie CAT(0) et la géométrie cubique. Finalement, la troisième et dernière partie de la thèse est consacrée à l'application des critères généraux démontrés précédemment à certaines classes de groupes particulières, incluant les produits graphés, les groupes de diagrammes introduits par Guba et Sapir, certains produits en couronne, et certains graphes de groupes. Les produits graphés constituent notre application la plus naturelle, où le lien entre le groupe et son graphe quasi-médian associé est particulièrement fort et explicite; en particulier, nous sommes capables de déterminer précisément quand un produit graphé est relativement hyperbolique. / The class of quasi-median graphs is a generalisation of median graphs, or equivalently of CAT(0) cube complexes. The purpose of this thesis is to introduce these graphs in geometric group theory. In the first part of our work, we extend the definition of hyperplanes from CAT(0) cube complexes, and we show that the geometry of a quasi-median graph essentially reduces to the combinatorics of its hyperplanes. In the second part, we exploit the specific structure of the hyperplanes to state combination results. The main idea is that if a group acts in a suitable way on a quasi-median graph so that clique-stabilisers satisfy some non-positively curved property P, then the whole group must satisfy P as well. The properties we are interested in are mainly (relative) hyperbolicity, (equivariant) lp-compressions, CAT(0)-ness and cubicality. In the third part, we apply our general criteria to several classes of groups, including graph products, Guba and Sapir's diagram products, some wreath products, and some graphs of groups. Graph products are our most natural examples, where the link between the group and its quasi-median graph is particularly strong and explicit; in particular, we are able to determine precisely when a graph product is relatively hyperbolic.

Page generated in 0.0457 seconds