• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 43
  • 30
  • 7
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 111
  • 39
  • 33
  • 32
  • 22
  • 20
  • 18
  • 14
  • 12
  • 11
  • 10
  • 10
  • 10
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Étude de l’impact de la télomérase sur la régénération et la reprogrammation de l’épithélium rénal / Study of the impact of telomerase on the regeneration and reprogramming of the renal epithelium

Montandon, Margo 10 December 2018 (has links)
Le rein est un organe considéré comme statique, montrant une capacité régénérative très limitée. Les cellules épithéliales du glomérule, appelées podocytes, sont des cellules hautement différenciées qui possèdent des extensions cytoplasmiques indispensables à leur fonction de filtration du sang. Ces cellules sont particulièrement impactées dans les pathologies rénales chroniques, et il apparaît primordial de développer des stratégies thérapeutiques permettant de restaurer leur fonction. Une des approches thérapeutiques qui semble des plus prometteuses consiste en le remplacement des cellules lésées par des cellules fonctionnelles. Dans cette approche de médecine régénérative, les capacités endogènes de régénération des organes sont exploitées et stimulées afin de permettre un rétablissement des tissus constituant les organes. Bien que les podocytes montrent un potentiel de prolifération et de régénération limité, un moyen unique de stimuler ces cellules consiste en la surexpression de la sous-unité protéique TERT de la télomérase. En effet, la surexpression transitoire de TERT dans le rein adulte induit la dédifférenciation et la prolifération des podocytes, suivi par la régénération de ces cellules. L’objectif de mon travail de thèse était d’identifier les voies de signalisation moléculaires ciblées par TERT lors de la reprogrammation des podocytes en cellules dédifférenciées et prolifératives. Le travail réalisé a permis de mettre en évidence les facteurs moléculaires impliqués dans l’initiation de ce processus ainsi que les effecteurs de la reprogrammation ciblés par TERT. De plus, l’analyse des voies de signalisation dérégulées par TERT montre que l’interaction et le remodelage de la matrice extracellulaire représentent des événements très précoces lors de la reprogrammation. Un autre objectif de ma thèse consistait en l’élucidation des mécanismes cellulaires mis en œuvre lors de la régénération des podocytes suite à la surexpression transitoire de TERT. Aussi, les résultats obtenus grâce à l’emploie d’une approche non biaisée de traçage cellulaire a révélé la présence de cellules progénitrices dans le néphron du rein adulte capables de s’amplifier de manière clonale afin de régénérer les podocytes de manière efficace et rapide. Ces résultats présentent un mécanisme cellulaire encore jamais appréhendé, menant à la régénération efficace des podocytes dans le rein des mammifères adultes. Ces données représentent une véritable percée des connaissances au regard de l’existence et de la fonction des progénitures rénaux, ouvrant la voie à des stratégies thérapeutiques permettant d’améliorer la régénération cellulaire de patients souffrant de maladies rénales chroniques. / In mammals, the kidney is considered a static organ with a limited regenerative capacity. Glomerular epithelial cells, named podocytes, are highly differentiated cells harboring cytoplasmic extensions essential for their function of blood filtration. These cells appear to be the weak link in chronic kidney diseases, rising up the necessity to develop therapeutic strategies to restore their function. One promising therapeutic approach consist in the replacement of impaired cells with fully functional cells. The aim of this regenerative medicine approach is to stimulate the endogenous regenerative capacity to reestablish the functionality of tissues within the organ. Although podocytes display a limited regenerative capacity, transient overexpression of the telomerase protein component TERT appears to be an efficient way to stimulate this capacity in vivo. Indeed, TERT exhibits potent effects on kidney podocytes in steady state conditions resulting in acute cell cycle entry and loss of differentiation. Such reprogramming of kidney podocytes is followed by replenishment of those cells by functional podocytes upon TERT withdrawal. TERT effects on kidney podocytes are independent of its role in telomere synthesis, and rather rely on its ability to modulate signaling pathways. My thesis objective was to identify the molecular mechanisms targeted by TERT non-canonical activity upon initiation and progression of podocyte reprogramming. Analysis of the molecular signaling modulated by TERT show that interaction and remodeling of the extracellular matrix represent early events of the reprogramming process. Those results highlighting TERTtarget genes and pathways upon in vivo cellular change of fate provide precious knowledge for unprecedented therapeutic strategies that aim to target TERT non-canonical activity in kidney cancers and other epithelial cancers more broadly. The second objective of my thesis was to elucidate the cellular mechanisms that support podocytes regeneration upon transient overexpression of TERT. Using podocyte lineage tracing approaches, we found that renewed podocytes observed following a TERT pulse are not derived from initially present podocytes. Using an unbiased lineage tracing approach, we further found that clonal amplification of progenitor cells is the source of podocyte replenishment in this system. Those results unveil a cellular mechanism that have never been apprehended previously, which activation lead to efficient podocyte regeneration in the adult mammalian kidney. Those data represent a real breakthrough in knowledge regarding kidney progenitor cells existence and function, and have profound implications for the development of therapeutic strategies that aim to maintain/enhance regeneration in patients with kidney diseases and in the elderly.
52

A comparative study of neocortical development between humans and great apes

Badsha, Farhath 05 April 2017 (has links)
The neocortex is the most recently evolved part of the mammalian brain which is involved in a repertoire of higher order brain functions, including those that separate humans from other animals. Humans have evolved an expanded neocortex over the course of evolution through a massive increase in neuron number (compared to our close relatives-­‐‑ the chimpanzees) in spite of sharing similar gestation time frames. So what do humans do differently compared to chimpanzees within the same time frame during their development? This dissertation addresses this question by comparing the developmental progression of neurogenesis between humans and chimpanzees using cerebral organoids as the model system. The usage of cerebral organoids, has enabled us to compare the development of both the human neocortex, and the chimpanzee neocortex from the very initiation of the neural phase of embryogenesis until very long periods of time. The results obtained so far suggest that the genetic programs underlying the development of the chimpanzee neocortex and the human neocortex are not very different, but rather the difference lies in the timing of the developmental progression. These results show that the chimpanzee neocortex spends lesser time in its proliferation phase, and allots lesser time to the generation of its neurons than the human neocortex. In more scientific terms, the neurogenic phase of the neocortex is shorter in chimpanzees than it is in humans. This conclusion is supported by (1) an earlier onset of gliogenesis in chimpanzees compared to humans which is indicative of a declining neurogenic phase, (2) an earlier increase in the chimpanzee neurogenic progenitors during development, compared to humans, (3) a higher number of stem cell– like progenitors in human cortices compared to chimpanzees, (4) a decline in neurogenic areas within the chimpanzee cerebral organoids over time compared to human cerebral organoids.
53

Využití Toll-like receptoru 2 při definování embryonálních definitivních hematopoetických progenitorů / The utility of Toll-like receptor 2 in defining the progenitors of definitive embryonic hematopoiesis

Šplíchalová, Iva January 2020 (has links)
Hematopoiesis is a vital process in which red blood cells and cells of the immune system are formed. It is initiated during early embryonic development when we find hematopoietic progenitors in separate anatomical sites. Embryonic hematopoiesis comprises three successive and partly overlapping waves of progenitors with a different hematopoietic potential. The primary anatomical place where hematopoiesis takes place shortly before the birth is the bone marrow (BM). Since at this time point of development BM is already populated by hematopoietic stem cell (HSCs) progenitors, it becomes also the site of hematopoiesis in adulthood. However, the bone marrow is not the only place where hematopoietic progenitors emerge and develop. The Yolk sac (YS) and the Aorta-Gonad-Mesonephros (AGM) region are the initial sites of the appearance of the three waves of progenitors in the early embryogenesis. These progenitors and their descendants play an indispensable role during the development of an individual. Because there are no specific markers that would unambiguously characterize progenitors of these individual waves, their physical separation and hence also functional characterization is still incomplete. Recent studies have shown that Toll-like receptors (TLRs) are expressed on adult HSCs. The stimulation of...
54

Identifiying Casc15 as a novel regulator of progenitors’ proliferation and neuronal migration in the developing neocortex

Tayel, Sara 03 February 2021 (has links)
Ein sehr organisiertes vielschichtiges Gewebe im Gehirn von Säugetieren ist der Neokortex, der höhere kognitive Funktionen ausübt wie Erlernen einer Sprache, Denken und räumliches Vorstellungsvermögen. Während der Evolution hat sich der Neokortex vergrößert, um den komplexen kognitiven Bedarf von höher entwickelten Tieren zu bewältigen. Es wird angenommen, dass diese kortikale Expansion primär in der Balance zwischen Proliferation und Differenzierung von neuralen Stammzellen und deren Vorläuferzellen begründet ist. Diese Prozesse sind sehr stark programmiert in Ort und Zeit, was viele Fragen über die involvierten molekularen Netzwerke aufwirft. In den letzten zwei Jahrzehnten haben sich lange nicht-kodierende RNAs (lncRNAs) als attraktive Ziele in der Entwicklungsbiologie dargestellt. Diese Moleküle haben unsere Wahrnehmung von der funktionalen Einheit einer Zelle revolutioniert, da sie bekannt dafür sind, deren Funktion mittels ihrer RNA Struktur auszuüben. Im Gegensatz zu microRNAs, die ihre Funktion über die Regulation von protein-kodierenden Genen auf post-transkriptionaler Ebene ausführen, agieren lncRNAs unterschiedlicher. Vor allem im Gehirn, dem Organ, was die größte Anzahl von lncRNAs exprimiert und das höchste Verhältnis von Gewebe- und Zell-spezifischen lncRNAs besitzt, wurde nachgewiesen, dass sie in fast jedem Prozess während der Entwicklung und bei Erwachsenen involviert sind. Mit dem Ziel eines besseren Verständnisses der molekularen Mechanismen der Gehirnentwicklung, habe ich angestrebt neue Rollen für lncRNAs in der Neurogenese zu identifizieren. Dafür habe ich Gebrauch von einem wirksamen genetischen Instrument gemacht, das zuvor in unserem Labor erzeugt wurde: ein Transkriptom von einer Mauslinie, die es ermöglicht, proliferierende, differenzierende und ausdifferenzierte Zellen zu sortieren. Die Analyse der differentiellen Expression von lncRNAs in den drei Zelltypen enthüllte interessante Kandidaten, die möglicherweise eine Rolle in der Neurogenese spielen. Die Manipulation dieser Kandidaten wurde in vivo getestet durch in utero Elektroporation. In dieser Studie habe ich Casc15 als Regulator von neuraler Stammzellproliferation und neuronaler Migration identifiziert. Überexpression von Casc15 im entwickelnden Kortex verursachte eine Deregulierung von Genen, die in der Entwicklung des Nervensystems und Zellteil-Morphogenese involviert sind. Insbesondere herunterregulierte Gene nach Casc15 Überexpression sind physiologisch angereichert in Neuronen. Diese schließen Gene ein, die verantwortlich für neuronale Migration und Reifung verantwortlich sind. Es wurde gezeigt, dass Casc15 Tbr2, einen neurogenen Transkriptionsfaktor, auf Protein- aber nicht mRNA-Level verringert. Außerdem wurde mittels einer Serie von bioinformatischen Programmen herausgefunden, dass Casc15 eine differentielle Gen-Isoform Benutzung im entwickelnden Gehirn verursacht, was eine Interaktion von Casc15 mit Spleißfaktoren suggeriert. Die Effekte von Casc15 auf Gen- oder Transkript-Expression kann nicht völlig erklärt werden durch Casc15’s Rolle in Neurogenese. Besonders sein Effekt auf Proteintranslation und –stabilität muss adressiert werden. Alles in allem zeigen meine Daten, wenn auch mechanistisch nicht sehr eindeutig, dass Casc15 ein wichtiger Regulator in der Gehirnentwicklung ist. Weiterführende Experimente sind nötig, um die molekularen Aspekte der Casc15 Funktionen zu erörtern.:Introduction 1 1.1 Development of the mammalian neocortex 2 1.2 Neurogenesis in the neocortex 4 1.2.1 Neural stem cells 4 1.2.2 Transient amplifying cells 7 1.2.3 Neurogenesis 9 1.3 Molecular control of neurogenesis in neocortex 11 1.3.1 Signaling pathways influencing the onset and progression of neurogenesis 12 1.3.2 Transcriptional control of neurogenesis 13 1.3.3 Epigenetics, Post-­‐translational modifications and more 15 1.4 Long non-­‐coding RNAs 16 1.4.1 General characteristics of lncRNAs 17 1.4.2 Versatile mechanisms of lncRNAs 20 1.4.3 Expression patterns of lncRNAs 21 1.4.4 lncRNAs in neurogenesis 23 1.5 Btg2RFP/Tubb3GFP mouse line to study cortical development 25 1.6 Aim of the study 28 2 Materials and Methods 29 2.1 Materials 30 2.1.1 Chemicals, buffers and culture media 30 2.1.2 Antibodies 31 2.1.3 Primers 32 2.1.4 Mouse strains 34 2.1.5 Bacterial Strains 34 2.1.6 Vectors 34 2.1.7 Kits and enzymes 35 2.2 Methods 35 2.2.1 Generation of plasmid 35 2.2.2 In utero electroporation 35 2.2.3 Mouse sample collection and treatment 36 2.2.4 Immunohistochemistry 36 2.2.5 Image acquisition and processing 37 2.2.6 Reverse transcription 37 2.2.7 Library preparation and supplemental bioinformatic analyses 37 2.2.8 Quantitative-­‐Reverse Transcriptase-­‐PCRs 39 2.2.9 Bioinformatic analysis 39 2.2.10 Statistical analysis 40 3 Results 41 3.1 Selection of potential regulators of neurogenesis 42 3.1.1 Differential expression analysis for RNA seq data 42 3.1.2 LincRNAs for in vivo manipulation 44 3.2 In vivo manipulation of K13, K10 and Casc15 48 3.2.1 K13 overexpression does not alter progenitors/neurons distribution in the cortex 49 3.2.2 K10 might affect migration of neurons in the developing cortex 50 3.2.3 Casc15 disrupted the distribution of cells across the four cortical layers 50 3.3 Characterization of the cellular phenotype of Casc15 52 3.3.1 Casc15 delays neuronal migration 52 3.3.2 Casc15 does not alter progenitors migration 54 3.3.3 Casc15 does not induce direct neurogenesis 54 3.3.4 Casc15 causes subtle changes on cell distribution after 24 hours 56 3.3.5 Effect of Casc16 on progenitors fate 58 3.4 Molecular effects of Casc15 61 3.4.1 Casc15 minimally changes gene expression in the developing cortex 61 3.4.2 Casc15 changes gene exon usage 64 4 Discussion 68 4.1 Casc15 is a potential regulator of neurogenesis 69 4.1.1 Casc15 induces proliferation of progenitors in the developing cortex 70 4.1.2 Casc15 delays neuronal migration in the developing cortex 71 4.2 Molecular aspects of Casc15 in neurogenesis 72 4.2.1 Casc15 roles in neurogenesis cannot be explained in light of changes in gene expression 73 4.2.2 Casc15 changes the transcriptome at an isoform level 76 4.3 Concluding remarks 78 5 Appendix 79 6 Bibliography 87
55

Charakterisierung enterischer, neuraler Stamm- und Vorläuferzellen aus dem humanen Darm

Hetz, Susan 21 February 2013 (has links)
Die Stamm- und Vorläuferzellen, im Weiteren als Progenitoren bezeichnet, des humanen Darms treten seit einigen Jahrzehnten immer stärker in den Fokus der Forschung. Mit der Entdeckung von Progenitorzellen im zentralen Nervensystem in den 60er Jahren des 20. Jahrhunderts kamen auch Bestrebungen auf, im peripheren Nervensystem nach Progenitoren zu suchen. Bald darauf, zu Beginn des 21. Jahrhunderts, wurden Sie entdeckt. Diese Population von Zellen bietet eine vielversprechende Möglichkeit, aus adultem Darmgewebe Progenitorzellen zu isolieren und diese therapeutisch, bei einer Vielzahl gastroenterologischer Erkrankungen, autolog einzusetzen. Derzeit werden auch andere mögliche Stamm- und Vorläuferzellen evaluiert. Die vorliegende Arbeit liefert einen wichtigen Beitrag zur Charakterisierung humaner, enterischer, neuraler Progenitorzellen. Dies ist essentiell für eine mögliche, klinische Translation. Es gelang, die in vitro Kulturbedingungen der isolierten, humanen Zellen durch Wachstumsfaktorenzugabe und Supplemente zu verbessern und ermöglicht so auch ein besseres Verständnis der in vivo-Situation. Weiterhin wurde das sich verändernde enterische Nervensystem des humanen Darms, in verschiedenen Altersstufen, spezifisch isoliert und analysiert. Es konnten neuartige Befunde zum Verlust von neuronalen Zellen im Allgemeinen und der charakteristische Verlust von NOS-Neuronen im Speziellen erhoben werden. Erstmals beobachtet wurde die Erhöhung der Genexpression für Gliazellen im gealterten ENS. Die gewonnen Erkenntnisse wurden weiterhin in einer in vivo-Transplantationsstudie angewendet. In ein Mausmodell mit einem chemisch geschädigten Darmnerensystem wurden postnatale, humane Progenitoren eingebracht und es gelang der Beweis einer verbesserten Funktionalität durch Integration von neugebildeten Neuronen, Glia und Muskelzellen.
56

ROLE OF TH2 IMMUNOSUPPRESSIVE REGULATORS IN TUMOR-INDUCED DIFFERENTIATION OF MYELOID-LYMPHATIC ENDOTHELIAL CELL PROGENITORS

Espinosa Gonzalez, Maria Camila 01 December 2021 (has links)
Lymphatic metastasis in breast cancer (BC) is one of the most important prognostic factors for patient survival. The escaped tumor cells reach distant vital organs and their unopposed expansion in these organs may cause mortality to patient. Tumor cells are transported to lymph node (LN) exclusively by tumor lymphatic vessels (LV). Increased tumor lymphangiogenesis, i.e., the formation of new LV is currently thought to be promoted by soluble factors such as VEGF-C and –D that activate VEGFR-3 expressed in lymphatic endothelial cells (LEC). These factors are secreted by malignant, tumor-infiltrating immune and stromal cells and create a favorable environment for formation of new vessels. However, emerging evidence suggests that tumor lymphangiogenesis is also promoted by Myeloid-derived Lymphatic Endothelial Cell Progenitors (M-LECP). We recently showed that M-LECP are abundant in mouse and human breast tumors and that their density strongly correlates with both lymphatic formation and nodal metastasis. Characterization of M-LECP showed that nearly all these cells express typical markers of the M2-type of macrophages such as CD163, CD204, and CD209. These cells are consider to be strongly immunosuppressive as exemplified by their inhibition of mobilization, activation, and survival of the key defenders against cancer cells, cytotoxic CD8+ T lymphocytes. Here, we compare the in vitro differentiation of M-LECP derived from bone marrow (BM) myeloid precursors primed with CSF-1 followed by secondary stimulants such as LPS, an immunomodulatory ligand for TLR4, and IL-4, IL-13, and IL-10 downstream targets of this receptor that are known to promote M2-macrophage development. Expression of these stimulants was analyzed by qPCR, flow cytometry, and ELISA during M-LECP differentiation. Our study describes the expression and functionality of these Th2 cytokines and their receptors during M-LECP differentiation. We found that each of the Th2 pathways singularly promotes M-LECP differentiation but there is an absent additive effect. We also found that IL-10 but no other Th2 cytokines is upregulated along with its receptor and contributes to the expression of the lymphatic properties similarly to LPS. To our knowledge, the role of IL-10 in development of lymphatic phenotype through differentiation of M-LECP has not been reported previously. Lastly, we show recruitment of M-LECP in a mouse BC model and the co-expression of the Th2 cytokine receptors in these cells. These studies have a potential to identify new regulators of M-LECP production in the bone marrow that could serve as biomarkers and targets for inhibiting tumor lymphatic formation, and by extension, lymph node metastasis.
57

The Effects of Resistance Endurance Training on Muscle Architecture and Stem/Progenitor Cell Populations in a Murine Model of Rhabdomyosarcoma

Sanders, Olivia 28 November 2022 (has links)
Background: Rhabdomyosarcoma (RMS) is a soft tissue malignancy of the skeletal muscle that occurs primarily in pediatric populations. The prevailing treatment for RMS is a combination of chemoradiation therapy and surgery which has contributed to its 5-year survival rate of 75%. However, the combination of RMS and chemoradiation therapy can lead to impaired muscle growth and development which results in life-long skeletal muscle atrophy and weakness for RMS survivors. Skeletal muscle is a highly plastic tissue due, in part, to dynamic interactions between muscle-resident stem and progenitor cells (i.e., satellite cells (SCs) and fibro/adipogenic progenitors (FAPs)), which are necessary for muscle maintenance, growth, and adaptation to anabolic stimuli such as resistance exercise training. There is a clear gap in research investigating whether resistance endurance training (RET) stimulates muscle growth and preserves muscle function after juvenile chemoradiation therapy. Purpose: To determine the extent to which RET ameliorates the skeletal muscle defects in a preclinical model of RMS survivorship. Hypothesis: RET will improve physical performance, muscle cross-sectional area (CSA), and stem/progenitor cell populations compared to sedentary mice following RMS and chemoradiation therapy. Methods: RMS (M3-9-M cells) was injected into a single hindlimb of juvenile (4 week) C57Bl/6 mice that underwent systemic chemotherapy followed by targeted, fractionated radiation therapy to the RMS-injected limb. Following therapy, mice underwent RET (RET; n=10) or remained sedentary (SED; n=10) for 8 weeks. Body composition and performance tests were completed pre- and post-therapy and throughout the exercise intervention. Fibre typing, cross-sectional area, myonuclear characteristics and trichrome staining were evaluated following muscle harvest and progenitor cell populations were assessed using flow cytometry. Results: RET led to increased endurance performance (p<0.0001) as well as a reduction in body fat percentage (p=0.0004). RET rescued atrophy induced by RMS+therapy as evidenced by a significant increase in gastrocnemius/soleus to body weight ratio for the RET group compared to the SED group (p=0.0303), despite the decrease in muscle weight observed in the treated limb compared to the control limb (p=0.015). A distinct increase in intramuscular fibrosis was noted in the treated limb compared to the control limb in both groups (p=0.0283). Furthermore, RET resulted in larger myofibre cross-sectional area (p<0.05) and a shift from Type IIX to IIA fibres (p<0.05). We also noted a greater Type IIA myonuclear domain in the RET group compared to the SED group (p=0.0015) and an overall decrease in myonuclear domain (the cytoplasmic volume controlled by each myonucleus) for the treated limb compared to the control limb (p<0.05). Interestingly, we noticed overall cell death and an increase in immune cells in the RMS treated limb, while exercise resulted in increased endothelial and mesenchymal stromal cells. Significance: These preclinical findings will provide the rationale for further investigation of the mechanisms responsible for the beneficial effects of RET as well as optimizing the RET protocol in this juvenile cancer survivorship model.
58

Selection of Connective Tissue Progenitors Based on Cell-associated Hyaluronan for Enhanced Bone Regeneration

Caralla, Tonya 24 August 2012 (has links)
No description available.
59

Expression of homeobox genes in the developing cerebral cortex

Gonzalez Aspe, Ines January 2023 (has links)
When it comes to cell types, the cerebral cortex is one of the most diverse regions in the mammalian brain. Mouse cortical neurons are generated during development from radial glial cells (RGCs). But how these stem cells generate the different neuronal subtypes is still an open question. In the adult, transcription factors, specially homeobox genes, have been identified as determinants of neuronal types throughout the animal kingdom. Thus, in this study, we hypothesise that different subpopulations of neuronal progenitors (RGCs) give rise to subsequent subtypes of neurons in the cortex, and these populations can be defined by homeobox gene expression. Starting from a scRNA- seq analysis, we identified differentially expressed genes across different progenitor populations in the developing cortex: Adnp2, Homez and Hmbox1. We characterised their mRNA and protein expression across cortical layers in postnatal mice and found that these genes are also differentially expressed among layers. We also find discordances between scRNA-seq data, mRNA expression, and protein expression data that could indicate specific post-transcriptional regulation of these genes. Altogether, these results point to a role of homeobox genes in neuronal identity.
60

Basotho family odes (diboko) and oral tradition

Tsiu, M. W. (Moruti William), 1944- 01 January 2002 (has links)
Basotho family odes (diboko) form part of oral literature, and refer to names of families, clans or totems. They constitute poetic compositions conveying information about clans' historical origin, philosophy and ancestors. The performance of this oral art form makes use of formulaic techniques such as linking, parallelism, alliteration, etc., which are commonly used in praise poetry. As basis to the content of these oral art forms, the genealogies of the various Basotho clans are discussed to show the reflection of the progenitor names in the clan praises. The functions of family odes are of educational, social and religious nature. Other functions include their use in compositions of other genres, such as, praise poems, mine workers' chants, traditional doctors' falls (mawa) and songs. The recitation of this oral art form is characterised by the instability of the texts, which takes the form of extensions, additions, truncations, improvisations and genre transitions. / African Languages / M.A. (African Languages)

Page generated in 0.0487 seconds