• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 9
  • 9
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Morphological Development of Uniglomerular Projection Neurons in the Olfactory Lobe of the Moth, Manduca sexta

Chandler, Larry January 2008 (has links)
The moth Manduca sexta has been a common model for the study of the insect olfactory systems. The neuronal architecture in the antennal lobes (ALs) of insects and in the olfactory lobes of vertebrates is similar in structure and development. In Manduca, as in other olfactory systems, sensory receptor neurons send axons into the AL where they form synapses with local interneurons (LNs) and projection neurons (PNs) within the structural units of glomeruli. Here, I present the morphological development of one type of interneuron, the uniglomerular projection neuron (uPN), in normal AL development and in AL development in the absence of olfactory receptor neurons (ORNs). Using fluorescent-dye labeling of uPNs and confocal microscopy, my results show that in the absence of ORNs, uPN dendritic arborization is uncharacteristic of that in normally developing ALs, reinforcing the concept that afferent input guides the development of architecture in sensory areas of the brain.
2

Spinal cord plasticity in peripheral inflammatory pain

Dickie, Allen Charles January 2014 (has links)
Inflammatory pain is a debilitating condition that can occur following tissue injury or inflammation and results in touch evoked pain (allodynia), exaggerated pain (hyperalgesia) and spontaneous pain, yet the neural plasticity underlying these symptoms is not fully understood. However, it is known that lamina I neurokinin 1 receptor expressing (NK1R+) spinal cord output neurons are crucial for the manifestation of inflammatory pain. There is also evidence that the afferent input to and the postsynaptic response of these neurons may be altered in inflammatory pain, which could be relevant for inflammatory pain hypersensitivity. Therefore, the aim of this thesis was to study inflammatory pain spinal plasticity mechanisms by investigating the synaptic input to lamina I NK1R+ neurons. In ex vivo spinal cord and dorsal root preparations from the rat, electrophysiological techniques were used to assess inflammation-induced changes in and pharmacological manipulation of the primary afferent drive to lamina I NK1R+ neurons. The excitatory input to lamina I NK1R+ neurons was examined and it was found that inflammation did not alter the relative distribution of the type of primary afferent input received and did not potentiate monosynaptic A δ or monosynaptic C-fibre input, the predominant input to these neurons. Spontaneous excitatory input was significantly elevated in the subset of neurons that received monosynaptic A δ-fibre input only, regardless of inflammation. It has recently been shown that the chemerin receptor 23 (ChemR23) represents a novel inflammatory pain target, whereby ChemR23 agonists can decrease inflammatory pain hypersensitivity, by a mechanism that involves the attenuation of potentiated spinal cord responses. This study has found that the ChemR23 agonist, chemerin, attenuated capsaicin potentiation of excitatory input to lamina I NK1R+ neurons and significantly reduced monosynaptic C-fibre input to a subset of these neurons in inflammatory pain. However, chemerin was without effect in non-potentiated conditions. In exploring potential inflammatory pain spinal plasticity mechanisms, I have investigated a phenomenon called activity-dependent slowing (ADS), whereby repetitive stimulation of C-fibres at frequencies of 1Hz or above results in a progressive slowing of action potential conduction velocity, which manifests as a progressive increase in response latency. This is proposed to limit nociceptive input to the spinal cord, thus regulating plasticity. Results demonstrate that inflammation significantly attenuated C-fibre ADS in isolated dorsal roots. Furthermore, ADS in monosynaptic C-fibre input to lamina I NK1R+ neurons was significantly reduced in inflammatory pain, which could facilitate nociceptive drive to these key spinal cord output neurons and promote inflammatory pain spinal cord plasticity. In conclusion, the major novel findings of this thesis are firstly, that chemerin can attenuate primary afferent input to lamina I NK1R+ neurons in potentiated conditions, which supports recent studies that suggest ChemR23 is a potential target for the development of new analgesics. Secondly, it was discovered that ADS in monosynaptic C-fibre inputs to lamina I NK1R+ neurons is altered in inflammatory pain, which could be relevant for inflammatory pain spinal plasticity. The findings presented in this thesis could contribute to the development of novel inflammatory pain treatments.
3

Computer Modelling of Neuronal Interactions in the Striatum

Hjorth, Johannes January 2009 (has links)
Large parts of the cortex and the thalamus project into the striatum,which serves as the input stage of the basal ganglia. Information isintegrated in the striatal neural network and then passed on, via themedium spiny (MS) projection neurons, to the output stages of thebasal ganglia. In addition to the MS neurons there are also severaltypes of interneurons in the striatum, such as the fast spiking (FS)interneurons. I focused my research on the FS neurons, which formstrong inhibitory synapses onto the MS neurons. These striatal FSneurons are sparsely connected by electrical synapses (gap junctions),which are commonly presumed to synchronise their activity.Computational modelling with the GENESIS simulator was used toinvestigate the effect of gap junctions on a network of synapticallydriven striatal FS neurons. The simulations predicted a reduction infiring frequency dependent on the correlation between synaptic inputsto the neighbouring neurons, but only a slight synchronisation. Thegap junction effects on modelled FS neurons showing sub-thresholdoscillations and stuttering behaviour confirm these results andfurther indicate that hyperpolarising inputs might regulate the onsetof stuttering.The interactions between MS and FS neurons were investigated byincluding a computer model of the MS neuron. The hypothesis was thatdistal GABAergic input would lower the amplitude of back propagatingaction potentials, thereby reducing the calcium influx in thedendrites. The model verified this and further predicted that proximalGABAergic input controls spike timing, but not the amplitude ofdendritic calcium influx after initiation.Connecting models of neurons written in different simulators intonetworks raised technical problems which were resolved by integratingthe simulators within the MUSIC framework. This thesis discusses theissues encountered by using this implementation and gives instructionsfor modifying MOOSE scripts to use MUSIC and provides guidelines forachieving compatibility between MUSIC and other simulators.This work sheds light on the interactions between striatal FS and MSneurons. The quantitative results presented could be used to developa large scale striatal network model in the future, which would beapplicable to both the healthy and pathological striatum. / QC 20100720
4

Molecular Controls over Developmental Acquisition of Diverse Callosal Projection Neuron Subtype Identities

Fame, Ryan Marie 30 April 2015 (has links)
The mammalian neocortex is an exquisite, highly organized brain structure composed of hundreds of subpopulations of neurons and glia, precisely connected to enable motor control, sensory perception, information integration, and planning. Unique molecular, structural, and anatomical neuronal properties underlie diverse functionality, endowing much of the neocortex’s complex processing power. Neocortical size correlates with information processing capacity, suggesting that increased neuronal number and diversity begets increased sophistication. One excitatory projection neuron type, callosal projection neurons (CPN), has disproportionately expanded with cortical size increase. CPN directly connect homotypic regions of the two neocortical hemispheres by sending axons via the largest white matter fiber tract in the brain, the corpus callosum (CC), allowing quick relay, integration, and comparison of information. In humans, the CC contains over 300,000 axons, CPN have been centrally implicated in autism spectrum disorders, and absence or surgical disruption of CPN connectivity in humans is associated with defects in abstract reasoning, problem solving, and generalization. Therefore, CPN are critical to complex brain functions, and their diversity likely contributes to these roles. Work presented in this dissertation addresses molecular controls over CPN development, specifically genes that are expressed by, and function in, particular subpopulations of CPN. While much progress has been made in identifying molecular controls over neocortical arealization, lamination, and broad subtype specification, CPN diversity has remained largely unaddressed. Therefore, this work begins by identifying genes more highly expressed in CPN than other closely related projection neuron populations, and uncovers molecular diversity within CPN. From this molecular diversity, functional analysis of three candidate molecular controls over CPN subtype diversity follows. Cited2 acts broadly in neocortical progenitor development and postnatally in refining somatosensory CPN identity. Caveolin1 identifies a population of CPN with dual axonal projections. Tmtc4 is mutated in human CC disease and can function in CPN axonal development. These analyses of CPN molecular diversity in mouse then expand to an investigation of which molecular subpopulations are conserved, expanded, or uncommon between rodent and primate, allowing both for comparative evolutionary theories of CPN function, and indicating which CPN populations critical for human brain function can be best studied in rodent models.
5

Calcium-Mediated Excitation and Plasticity in Primary Olfactory Pathways of the Honey Bee Antennal Lobe

January 2014 (has links)
abstract: Spatiotemporal processing in the mammalian olfactory bulb (OB), and its analog, the invertebrate antennal lobe (AL), is subject to plasticity driven by biogenic amines. I study plasticity using honey bees, which have been extensively studied with respect to nonassociative and associative based olfactory learning and memory. Octopamine (OA) release in the AL is the functional analog to epinephrine in the OB. Blockade of OA receptors in the AL blocks plasticity induced changes in behavior. I have now begun to test specific hypotheses related to how this biogenic amine might be involved in plasticity in neural circuits within the AL. OA acts via different receptor subtypes, AmOA1, which gates calcium release from intracellular stores, and AmOA-beta, which results in an increase of cAMP. Calcium also enters AL interneurons via nicotinic acetylcholine receptors, which are driven by acetylcholine release from sensory neuron terminals, as well as through voltage-gated calcium channels. I employ 2-photon excitation (2PE) microscopy using fluorescent calcium indicators to investigate potential sources of plasticity as revealed by calcium fluctuations in AL projection neuron (PN) dendrites in vivo. PNs are analogous to mitral cells in the OB and have dendritic processes that show calcium increases in response to odor stimulation. These calcium signals frequently change after association of odor with appetitive reinforcement. However, it is unclear whether the reported plasticity in calcium signals are due to changes intrinsic to the PNs or to changes in other neural components of the network. My studies were aimed toward understanding the role of OA for establishing associative plasticity in the AL network. Accordingly, I developed a treatment that isolates intact, functioning PNs in vivo. A second study revealed that cAMP is a likely component of plasticity in the AL, thus implicating the AmOA-beta; receptors. Finally, I developed a method for loading calcium indicators into neural components of the AL that have yet to be studied in detail. These manipulations are now revealing the molecular mechanisms contributing to associative plasticity in the AL. These studies will allow for a greater understanding of plasticity in several neural components of the honey bee AL and mammalian OB. / Dissertation/Thesis / Doctoral Dissertation Neuroscience 2014
6

Directed differentiation of mouse embryonic stem cells into neocortical output neurons

Sadegh, Cameron 10 October 2015 (has links)
During development of the neocortex, many diverse projection neuron subtypes are generated under regulation of cell-extrinsic and cell-intrinsic controls. One broad projection neuron class, corticofugal projection neurons (CFuPN), is the primary output neuron population of the neocortex. CFuPN axons innervate sub-cortical targets including thalamus, striatum, brainstem, and spinal cord.
7

Die funktionelle Bedeutung von Projektionszellen des medialen entorhinalen Cortex in der Interaktion zwischen entorhinalem Cortex und Hippocampus

Gloveli, Tengis 14 November 2000 (has links)
Der entorhinale Cortex (EC) nimmt eine zentrale Stellung im limbischem System ein und ist darüber hinaus eine Verbindungsstelle zwischen Hippocampus und Cortex. Um die Eigenschaften der Projektionszellen im EC genauer zu charakterisieren, führten wir intrazelluläre Ableitungen an den Neuronen der oberflächlichen (Schicht II und III) und der tiefen (Schicht IV-VI) Schichten durch, von denen etwa ein Viertel während der Ableitung mit dem Farbstoff Biozytin gefärbt werden konnten. In Schicht III des medialen EC fanden wir vier unterschiedliche Zelltypen, von denen zwei als Projektionsneurone (Typ 1 und Typ 2) charakterisiert wurden. Die Projektionszellen der Schicht III besitzen eine niedrige Schwelle zur Auslösung synaptisch evozierter Aktionspotentiale. Daneben konnten wir zwei weitere Typen von Zellen (Typ 3 und Typ 4) bestimmen, deren Somata in der Schicht III lagen, die aber nicht in den Hippocampus projizierten, sondern lokal im EC verschaltet waren. In den tiefen Schichten des EC fanden sich zur Area Dentata (AD) projezierende bipolare und multipolare Neurone, die trotz der morphologischen Ähnlichkeit mit GABAergen Interneuronen die typischen elektrophysiologischen und neurochemischen Eigenschaften von Prinzipalzellen des EC besitzen. Diese Neurone können vermutlich Funktionen von sowohl Lokal- als auch Projektionszellen übernehmen und dementsprechend die schnelle Informationsübertragung zwischen den tiefen und oberflächlichen Schichten einerseits und zwischen EC und AD andererseits ausüben. Um der Frage nachzugehen, unter welchen Bedingungen die Schicht II- und III-Projektionszellen aktiviert werden, führten wir repetitive synaptische Reizungen im EC durch. Hochfrequente repetitive synaptische Reizung (> 10 Hz) führt zu einer bevorzugten Aktivierung der Schicht II-Zellen. Hingegen werden die Schicht III-Zellen bei niedrigeren Reizfrequenzen (< 6 Hz) bevorzugt aktiviert und Schicht II-Zellen gleichzeitig gehemmt. Dies läßt vermuten, daß der Informationstransfer zwischen EC und Hippocampus frequenzabhängig gesteuert wird. / The entorhinal cortex (EC) occupies a key position in the limbic system because it functions as a relay station between the hippocampus and cortex. To analyze the properties of the projection cells of the EC we used intracellular recordings from superficial (layers II and III) and deep layers (layers IV-VI). Intracellular electrodes contained the marker biocytin and the labeled neurons were processed for posthoc anatomical identification. We can classify medial EC layer III cells into four different types. Type 1 and 2 cells were projection cells. These cells exhibited a low threshold of action potential generation upon synaptic stimulation. We identified the two other, presumed local circuit type 3 and type 4 cells, whose axons remained within the EC. In deep EC layers we described bipolar and multipolar neurons which form projections from the deep layers of the EC to the dentate gyrus (DG). Despite the morphological similarity of these cells to those of GABAergic interneurons in the EC, their electrophysiological characteristics were similar to those of principal neurons. We conclude that neurons of the deep layers of the EC that project to the DG may function both as local circuit and projection neurons thereby providing a rapid transfer of information from deep layers of the EC to the DG and superficial layers of the EC. We next studied how the separate pathways from layers II and III of the EC to the hippocampus are preferentially effective as a function of stimulation frequency. High frequency (>10 Hz) synaptic activation of the EC was more effective at eliciting action potentials from layer II EC neurons. In contrast, during low frequency (
8

Adaptive changes in striatal projection neurons explain the long duration response and the emergence of dyskinesias in patients with Parkinson’s disease: Neurology and Preclinical Neurological Studies - Review Article

Falkenburger, Björn, Kalliakoudas, Theodoros, Reichmann, Heinz 22 March 2024 (has links)
Neuronal activity in the brain is tightly regulated. During operation in real time, for instance, feedback and feedforward loops limit excessive excitation. In addition, cell autonomous processes ensure that neurons’ average activity is restored to a setpoint in response to chronic perturbations. These processes are summarized as homeostatic plasticity (Turrigiano in Cold Spring Harb Perspect Biol 4:a005736–a005736, 2012). In the basal ganglia, information is mainly transmitted through disinhibition, which already constraints the possible range of neuronal activity. When this tightly adjusted system is challenged by the chronic decline in dopaminergic neurotransmission in Parkinson’s disease (PD), homeostatic plasticity aims to compensate for this perturbation. We here summarize recent experimental work from animals demonstrating that striatal projection neurons adapt excitability and morphology in response to chronic dopamine depletion and substitution. We relate these cellular processes to clinical observations in patients with PD that cannot be explained by the classical model of basal ganglia function. These include the long duration response to dopaminergic medication that takes weeks to develop and days to wear off. Moreover, dyskinesias are considered signs of excessive dopaminergic neurotransmission in Parkinson’s disease, but they are typically more severe on the body side that is more strongly affected by dopamine depletion. We hypothesize that these clinical observations can be explained by homeostatic plasticity in the basal ganglia, suggesting that plastic changes in response to chronic dopamine depletion and substitution need to be incorporated into models of basal ganglia function. In addition, better understanding the molecular mechanism of homeostatic plasticity might offer new treatment options to avoid motor complications in patients with PD.
9

Modulation dopaminergique dans le système olfactif

Beauséjour, Philippe-Antoine 08 1900 (has links)
Les figures de neuroanatomie de ce mémoire peuvent être téléchargées en haute résolution. / Une voie neuronale sous-tendant la locomotion induite par la détection d’odorants a été découverte chez la lamproie (Derjean et al., 2010). Le signal olfactif est relayé du bulbe olfactif médian au tubercule postérieur, puis à la région locomotrice mésencéphalique et enfin aux cellules réticulospinales qui activent les réseaux locomoteurs spinaux. Des études récentes démontrent que le bulbe olfactif médian est sous l’influence d’une inhibition GABAergique tonique qui régule les réponses des cellules réticulospinales à la stimulation du nerf olfactif (Daghfous et al., 2013). Des mécanismes de modulation supplémentaires pourraient exister dans le bulbe olfactif de Petromyzon marinus puisqu’il contient aussi des fibres dopaminergiques. Chez tous les vertébrés étudiés, la dopamine joue un rôle important dans le traitement olfactif. Des techniques anatomiques (traçage et immunofluorescence) et physiologiques (enregistrements intracellulaires) ont été utilisées pour étudier la modulation dopaminergique de la voie olfacto-motrice. L’immunofluorescence ciblant la dopamine a révélé des fibres plus nombreuses dans la partie médiane du BO et à proximité de neurones de projection et de fibres olfactives. De plus, aucun corps cellulaire immunopositif n’a été détecté dans le bulbe olfactif. L’enregistrement des réponses synaptiques des cellules réticulospinales à la stimulation du nerf olfactif a été réalisé dans le cerveau isolé in vitro. L’injection locale de dopamine dans le bulbe olfactif médian diminue de moitié l’amplitude de réponse. Sous l’effet d’un antagoniste des récepteurs GABAA dans le bain ou localement dans le bulbe olfactif médian, les dépolarisations soutenues enregistrées sont supprimées par l’injection de dopamine. Cependant, l’injection individuelle ou combinée dans le bulbe olfactif médian d’antagonistes sélectifs des récepteurs D1 ou D2, soit le SCH 23390 et l’éticlopride, demeure sans effet significatif sur les réponses olfacto-motrices, indiquant l’absence d’activité dopaminergique tonique. Pour localiser les neurones responsables de cette modulation, des injections de traceur axonal ont été combinées avec l’immunofluorescence ciblant la dopamine. Des cellules dopaminergiques projetant au BO médian ont été observées dans les noyaux dopaminergiques du tubercule postérieur et de l’hypothalamus périventriculaire. Dans l’ensemble, nos résultats montrent anatomiquement et physiologiquement la présence d’une innervation dopaminergique dans le bulbe olfactif médian qui a une action inhibitrice sur le traitement olfacto-moteur. / A neural substrate underlying odor-evoked locomotion was revealed in lampreys (Derjean et al., 2010), involving a neural pathway extending from the medial part of the olfactory bulb to the posterior tuberculum. The signal is then relayed to the mesencephalic locomotor region and eventually reaches reticulospinal cells that activate the spinal locomotor networks. Recent research in the lab (Daghfous et al., 2013) shows that the medial olfactory bulb, is under a tonic GABAergic inhibition gating reticulospinal cell responses to olfactory nerve stimulation. Additional modulatory mechanisms might exist in the olfactory bulb of Petromyzon marinus as it also contains dopaminergic fibers. In every vertebrate studied to date, dopamine plays an important role in olfactory processing. Anatomical (axonal tracers and immunofluorescence) and physiological (intracellular recordings) techniques were used to investigate the dopaminergic modulation of the olfacto-motor pathway. Dopamine immunofluorescence showed scarce innervation of the olfactory bulb that was most abundant in the medial part and in close vicinity to projection neurons and olfactory nerve fibers. Additionally, no dopamine-immunoreactive cell bodies were detected in the olfactory bulb. Synaptic responses of reticulospinal cells to olfactory nerve stimulation were recorded in the isolated brain. Local injection of dopamine in the medial olfactory bulb induces an almost two-fold decrease of the synaptic responses. When GABAA receptor antagonist GABAzine was also injected in the medial olfactory bulb, the effect of dopamine was much more evident and could suppress large bursts of action potentials. However, D1 (SCH 23390) and D2 (Eticlopride) receptor antagonists injection in the medial olfactory bulb failed to alter the amplitude of reticulospinal cell responses to olfactory nerve stimulation, indicating that this modulation is not tonic. To locate the neurons responsible for this modulation, tracer injections combined with dopamine immunofluorescence were performed. Dopaminergic cells projecting to the medial olfactory bulb were found in the dopaminergic nuclei of the posterior tuberculum and the periventricular hypothalamus. Altogether, our results show anatomically and physiologically the presence of a dopaminergic innervation within the medial olfactory bulb that mediates inhibitory effects on olfacto-motor signaling.

Page generated in 0.1091 seconds