• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Traitement de l'incertitude pour la reconnaissance de la parole robuste au bruit / Uncertainty learning for noise robust ASR

Tran, Dung Tien 20 November 2015 (has links)
Cette thèse se focalise sur la reconnaissance automatique de la parole (RAP) robuste au bruit. Elle comporte deux parties. Premièrement, nous nous focalisons sur une meilleure prise en compte des incertitudes pour améliorer la performance de RAP en environnement bruité. Deuxièmement, nous présentons une méthode pour accélérer l'apprentissage d'un réseau de neurones en utilisant une fonction auxiliaire. Dans la première partie, une technique de rehaussement multicanal est appliquée à la parole bruitée en entrée. La distribution a posteriori de la parole propre sous-jacente est alors estimée et représentée par sa moyenne et sa matrice de covariance, ou incertitude. Nous montrons comment propager la matrice de covariance diagonale de l'incertitude dans le domaine spectral à travers le calcul des descripteurs pour obtenir la matrice de covariance pleine de l'incertitude sur les descripteurs. Le décodage incertain exploite cette distribution a posteriori pour modifier dynamiquement les paramètres du modèle acoustique au décodage. La règle de décodage consiste simplement à ajouter la matrice de covariance de l'incertitude à la variance de chaque gaussienne. Nous proposons ensuite deux estimateurs d'incertitude basés respectivement sur la fusion et sur l'estimation non-paramétrique. Pour construire un nouvel estimateur, nous considérons la combinaison linéaire d'estimateurs existants ou de fonctions noyaux. Les poids de combinaison sont estimés de façon générative en minimisant une mesure de divergence par rapport à l'incertitude oracle. Les mesures de divergence utilisées sont des versions pondérées des divergences de Kullback-Leibler (KL), d'Itakura-Saito (IS) ou euclidienne (EU). En raison de la positivité inhérente de l'incertitude, ce problème d'estimation peut être vu comme une instance de factorisation matricielle positive (NMF) pondérée. De plus, nous proposons deux estimateurs d'incertitude discriminants basés sur une transformation linéaire ou non linéaire de l'incertitude estimée de façon générative. Cette transformation est entraînée de sorte à maximiser le critère de maximum d'information mutuelle boosté (bMMI). Nous calculons la dérivée de ce critère en utilisant la règle de dérivation en chaîne et nous l'optimisons par descente de gradient stochastique. Dans la seconde partie, nous introduisons une nouvelle méthode d'apprentissage pour les réseaux de neurones basée sur une fonction auxiliaire sans aucun réglage de paramètre. Au lieu de maximiser la fonction objectif, cette technique consiste à maximiser une fonction auxiliaire qui est introduite de façon récursive couche par couche et dont le minimum a une expression analytique. Grâce aux propriétés de cette fonction, la décroissance monotone de la fonction objectif est garantie / This thesis focuses on noise robust automatic speech recognition (ASR). It includes two parts. First, we focus on better handling of uncertainty to improve the performance of ASR in a noisy environment. Second, we present a method to accelerate the training process of a neural network using an auxiliary function technique. In the first part, multichannel speech enhancement is applied to input noisy speech. The posterior distribution of the underlying clean speech is then estimated, as represented by its mean and its covariance matrix or uncertainty. We show how to propagate the diagonal uncertainty covariance matrix in the spectral domain through the feature computation stage to obtain the full uncertainty covariance matrix in the feature domain. Uncertainty decoding exploits this posterior distribution to dynamically modify the acoustic model parameters in the decoding rule. The uncertainty decoding rule simply consists of adding the uncertainty covariance matrix of the enhanced features to the variance of each Gaussian component. We then propose two uncertainty estimators based on fusion to nonparametric estimation, respectively. To build a new estimator, we consider a linear combination of existing uncertainty estimators or kernel functions. The combination weights are generatively estimated by minimizing some divergence with respect to the oracle uncertainty. The divergence measures used are weighted versions of Kullback-Leibler (KL), Itakura-Saito (IS), and Euclidean (EU) divergences. Due to the inherent nonnegativity of uncertainty, this estimation problem can be seen as an instance of weighted nonnegative matrix factorization (NMF). In addition, we propose two discriminative uncertainty estimators based on linear or nonlinear mapping of the generatively estimated uncertainty. This mapping is trained so as to maximize the boosted maximum mutual information (bMMI) criterion. We compute the derivative of this criterion using the chain rule and optimize it using stochastic gradient descent. In the second part, we introduce a new learning rule for neural networks that is based on an auxiliary function technique without parameter tuning. Instead of minimizing the objective function, this technique consists of minimizing a quadratic auxiliary function which is recursively introduced layer by layer and which has a closed-form optimum. Based on the properties of this auxiliary function, the monotonic decrease of the new learning rule is guaranteed.
2

Schemes and Strategies to Propagate and Analyze Uncertainties in Computational Fluid Dynamics Applications / Schémas et stratégies pour la propagation et l’analyse des incertitudes dans la simulation d’écoulements

Geraci, Gianluca 05 December 2013 (has links)
Ce manuscrit présente des contributions aux méthodes de propagation et d’analyse d’incertitude pour des applications en Mécanique des Fluides Numérique. Dans un premier temps, deux schémas numériques innovantes sont présentées: une approche de type ”Collocation”, et une autre qui est basée sur une représentation de type ”Volumes Finis” dans l’espace stochastique. Dans les deux, l’élément clé est donné par l’introduction d’une représentation de type ”Multirésolution” dans l’espace stochastique. L’objectif est à la fois de réduire le nombre de dimensions et d’appliquer un algorithme d’adaptation de maillage qui puisse être utilisé dans l’espace couplé physique/stochastique pour des problèmes non-stationnaires. Pour finir, une stratégie d’optimisation robuste est proposée, qui est basée sur une analyse de décompositionde la variance et des moments statistiques d’ordre plus élevé. Dans ce cas, l’objectif est de traiter des problèmes avec un grand nombre d’incertitudes. / In this manuscript, three main contributions are illustrated concerning the propagation and the analysis of uncertainty for computational fluid dynamics (CFD) applications. First, two novel numerical schemes are proposed : one based on a collocation approach, and the other one based on a finite volume like representation in the stochastic space. In both the approaches, the key element is the introduction of anon-linear multiresolution representation in the stochastic space. The aim is twofold : reducing the dimensionality of the discrete solution and applying a time-dependent refinement/coarsening procedure in the combined physical/stochastic space. Finally, an innovative strategy, based on variance-based analysis, is proposed for handling problems with a moderate large number of uncertainties in the context of the robust design optimization. Aiming to make more robust this novel optimization strategies, the common ANOVA-like approach is also extended to high-order central moments (up to fourth order). The new approach is more robust, with respect to the original variance-based one, since the analysis relies on new sensitivity indexes associated to a more complete statistic description.
3

Modélisation hydrologique distribuée des crues en région Cévennes-Vivarais : impact des incertitudes liées à l'estimation des précipitations et à la paramétrisation du modèle / Distributed hydrological modeling of floods in the Cévennes-Vivarais region : impact of uncertainties related to precipitation estimation and model parameterization / Modelización hidrológica distribuida de crecidas en la región del Cévennes-Vivarais : impacto de incertidumbres ligadas a la estimación de la precipitación y a la parametrización del modelo

Navas Nunez, Rafael 06 October 2017 (has links)
Il est connu qu’avoir un système d’observation de la pluie de haute résolution spatio – temporelle est crucial pour obtenir de bons résultats dans la modélisation pluie – écoulement. Le radar est un outil qui donne des estimations quantitatives de precipitation avec une très bonne résolution. Lorsqu’il est fusionné avec un réseau des pluviomètres les avantages des deux systèmes sont obtenus. Cependant, les estimations fournies par le radar ont des incertitudes différentes à celles qui sont obtenus avec les pluviomètres. Dans le processus de calcul pluie – écoulement l'incertitude des précipitations interagit avec l'incertitude du modèle hydrologique. L’objectif de ce travail est d’étudier les méthodes utilisées pour quantifier l'incertitude dans l'estimation des précipitations par fusion radar – pluviomètres et de l'incertitude dans la modélisation hydrologique, afin de développer une méthodologie d'analyse de leurs contributions individuelles au traitement pluie - écoulement.Le travail est divisé en deux parties, la première cherche à évaluer: Comment peut-on quantifier l'incertitude de l'estimation des précipitations par radar? Pour répondre à la question, l'approche géostatistique par Krigeage avec Dérive Externe (KED) et Génération Stochastique de la précipitation a été utilisée, qui permet de modéliser la structure spatio – temporaire de l’erreur. La méthode a été appliquée dans la région des Cévennes - Vivarais (France), où il y a un système très dense d'observation. La deuxième partie explique: Comment pourrais être quantifiée l'incertitude de la simulation hydrologique qui provient de l'estimation de précipitation par radar et du processus de modélisation hydrologique? Dans ce point, l'outil de calcul hydrologique à Mesoéchelle (HCHM) a été développé, c’est un logiciel hydrologique distribuée et temps continu, basé sur le Numéro de Courbe et l’Hydrographe Unitaire. Il a été appliqué dans 20 résolutions spatio - temporelles allant de 10 à 300 km2 et 1 à 6 heures dans les bassins de l’Ardèche (~ 1971 km2) et le Gardon (1810 km2). Apres une analyse de sensibilité, le modèle a été simplifié avec 4 paramètres et l’incertitude de la chaîne de processus a été analysée: 1) Estimation de precipitation; 2) Modélisation hydrologique; et 3) Traitement pluie - écoulement, par l’utilisation du coefficient de variation de l'écoulement simulé.Il a été montré que KED est une méthode qui fournit l’écart type de l’estimation des précipitations, lequel peut être transformé dans une estimation stochastique de l’erreur locale. Dans la chaîne des processus: 1) L'incertitude dans l'estimation de précipitation augmente avec la réduction de l’échelle spatio – temporelle, et son effet est atténué par la modélisation hydrologique, vraisemblablement par les propriétés de stockage et de transport du bassin ; 2) L'incertitude de la modélisation hydrologique dépend de la simplification des processus hydrologiques et pas de la surface du bassin ; 3) L'incertitude dans le traitement pluie - écoulement est le résultat de la combinaison amplifiée des incertitudes de la précipitation et la modélisation hydrologique. / It is known that having a precipitation observation system at high space - time resolution is crucial to obtain good results in rainfall - runoff modeling. Radar is a tool that offers quantitative precipitation estimates with very good resolution. When it is merged with a rain gauge network the advantages of both systems are achieved. However, radars estimates have different uncertainties than those obtained with the rain gauge. In the modeling process, uncertainty of precipitation interacts with uncertainty of the hydrological model. The objective of this work is: To study methods used to quantify the uncertainty in radar – raingauge merge precipitation estimation and uncertainty in hydrological modeling, in order to develop a methodology for the analysis of their individual contributions in the uncertainty of rainfall - runoff estimation.The work is divided in two parts, the first one evaluates: How the uncertainty of radar precipitation estimation can be quantified? To address the question, the geostatistical approach by Kriging with External Drift (KED) and Stochastic Generation of Precipitation was used, which allows to model the spatio - temporal structure of errors. The method was applied in the Cévennes - Vivarais region (France), where there is a very rich observation system. The second part explains: How can it be quantified the uncertainty of the hydrological simulation coming from the radar precipitation estimates and hydrological modeling process? In this point, the hydrological mesoscale computation tool was developed; it is distributed hydrological software in time continuous, within the basis of the Curve Number and the Unit Hydrograph. It was applied in 20 spatio-temporal resolutions ranging from 10 to 300 km2 and 1 to 6 hours in the Ardèche (~ 1971 km2) and the Gardon (1810 km2) basins. After a sensitivity analysis, the model was simplified with 4 parameters and the uncertainty of the chain of process was analyzed: 1) Precipitation estimation; 2) Hydrological modeling; and 3) Rainfall - runoff estimation, by using the coefficient of variation of the simulated flow.It has been shown that KED is a method that provides the standard deviation of the precipitation estimation, which can be transformed into a stochastic estimation of the local error. In the chain of processes: 1) Uncertainty in precipitation estimation increases with decreasing spatio-temporal scale, and its effect is attenuated by hydrological modeling, probably due by storage and transport properties of the basin; 2) The uncertainty of hydrological modeling depends on the simplification of hydrological processes and not on the surface of the basin; 3) Uncertainty in rainfall - runoff treatment is the result of the amplified combination of precipitation and hydrologic modeling uncertainties.
4

Fusion de données géoréférencées et développement de services interopérables pour l’estimation des besoins en eau à l’échelle des bassins versants / Geospatial data fusion and development of interoperable services to assess water needs at watershed scale

Beaufils, Mickaël 04 December 2012 (has links)
De nos jours, la préservation de l’environnement constitue un enjeu prioritaire. La compréhension des phénomènes environnementaux passe par l’étude et la combinaison d’un nombre croissant de données hétérogènes. De nombreuses initiatives internationales (INSPIRE, GEOSS) visent à encourager le partage et l’échange de ces données. Dans ce sujet de recherche, nous traitons de l’intérêt de mettre à disposition des modèles scientifiques sur le web. Nous montrons l’intérêt d’utiliser des applications s’appuyant sur des données géoréférencées et présentons des méthodes et des moyens répondant aux exigences d’interopérabilité. Nous illustrons notre approche par l’implémentation de modèles d’estimation des besoins en eau agricoles et domestiques fonctionnant à diverses échelles spatiales et temporelles. Un prototype basé sur une architecture entièrement orientée services web a été développé. L’outil s’appuie sur les standards Web Feature Service (WFS), Sensor Observation Service (SOS) et Web Processing Service (WPS) de l’OGC. Enfin, la prise en compte des imperfections des données est également abordée avec l’intégration de méthodes d’analyse de sensibilité et de propagation de l’incertitude. / Nowadays, preservation of the environment is a main priority. Understanding of environmental phenomena requires the study and the combination of an increasing number of heterogeneous data. Several international initiatives (INSPIRE, GEOSS) aims to encourage the sharing and exchange of those data.In this thesis, the interest of making scientific models available on the web is discussed. The value of using applications based on geospatial data is demonstrated. Several methods and means that satisfy the requirements of interoperability are also purposed.Our approach is illustrated by the implementation of models for estimating agricultural and domestic water requirements. Those models can be used at different spatial scales and temporal granularities. A prototype based on a complete web service oriented architecture was developed. The tool is based on the OGC standards Web Feature Service (WFS), Sensor Observation Service (SOS) and Web Processing Service (WPS).Finally, taking into account the imperfections of the data is also discussed with the integration of methods for sensitivity analysis and uncertainty propagation.

Page generated in 0.147 seconds