• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 5
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The particulate form of the enzyme methane monooxygenase

Charlton, Susan January 1997 (has links)
No description available.
2

Développement d’un réacteur intensifié pour la production d’acroléine / Development of an intensified reactor for the production of acrolein

Chateau, Mathieu 11 December 2018 (has links)
L’oxydation catalytique du propylène en acroléine en phase gazeuse est un procédé complexe et fortement exothermique, faisant intervenir de nombreuses réactions consécutives et compétitives. Une des clés pour maximiser le rendement en acroléine est le contrôle rigoureux de la température du mélange réactionnel ; il s’agit de lever les limitations aux transferts thermiques, afin d’évacuer l’importante chaleur de réaction. Un échangeur-réacteur milli-structuré a ainsi été retenu pour intensifier le procédé. En effet, de par la taille millimétrique de ses canaux ainsi que le choix d’un dépôt du catalyseur industriel sur les parois internes de ceux-ci, les transferts de chaleur et de matière sont améliorés. Afin de réaliser ce dimensionnement, une étude préliminaire de la cinétique des réactions a été réalisée et un modèle cinétique a été déterminé. Ce dernier a été utilisé afin de dégager les conditions optimales de fonctionnement d’un canal réactif (température, nombre de canaux composition), et afin d’extrapoler ces conditions sur un agencement structuré des canaux réactifs. La forme des chambres de distribution et de collecte du réacteur-échangeur ainsi que sa structure ont été déterminées et optimisées afin d’atteindre un rendement élevé par un contrôle optimal de la température, de minimiser la maldistribution des fluides et d’assurer la sécurité du procédé. Ce réacteur-échangeur intensifié, à la géométrie complexe, a finalement été fabriqué par impression 3D, au sein du projet français FAIR (Fabrication Additive pour l’Intensification des Réacteurs) / The catalytic oxidation of propylene to acrolein is a complex and highly exothermic process carried out in the gas phase, involving consecutive and competitive reactions. To maximize the efficiency of this process, the temperature needs to be rigorously controlled and the thermal transfers must be maximized, in order to evacuate the heat released by the reactions. A millistructured reactor-exchanger has thus been chosen to intensify this process. Indeed, millimetric channels washcoated with an industrial catalyst provide intensified heat and mass transfer. To carry out this design, a preliminary study of the kinetics of these reactions was carried out and a kinetic model was determined. This model was then used to identify the optimal operating conditions of a single reactive channel (temperature, number of channels, composition), and to extrapolate these conditions for the design of an intensified reactor exchanger. The shape of the distribution and collect chambers of these reactive channels were then optimized to minimize maldistribution, maximize the acrolein yield with an optimal control of the temperature, and to ensure the safety of the process. This intensified reactor-exchanger with complex geometry was finally manufactured by 3D printing, within the French project FAIR (Additive Manufacturing for the Intensification of Reactors)
3

Spatially and Temporally Resolving Concentration and Temperature Profiles within a Fresh and a Thermally-Aged Monolith Catalyst

Shakir, Osama January 2008 (has links)
The ability to resolve reactions within a monolith spatially and temporally is key in developing reliable kinetic models, as well as in validating proposed reaction mechanisms. In this work, two techniques, IR-thermography and spatially-resolved capillary inlet mass spectrometry (SpaciMS), were used to measure temperature and gas-phase concentrations. Specifically, they were applied to monitor the axial distribution of temperature and concentration profiles during propylene oxidation over a Pt/Al2O3 monolith-supported catalyst. Also, the effect of thermally aging the catalyst on the temperature and concentration patterns observed was investigated. During temperature programmed oxidation experiments, the data show that conversion of propylene began at the outlet, and a reaction front generated at the rear of the monolith traveled upstream, as a moving reaction zone, thereby creating a temperature wave pattern since the reaction is exothermic. The conversion was always complete downstream of this reaction zone at any point along the catalyst. When the reactor was cooled, the conversion of propylene started to drop, accompanied by a similar temperature wave pattern that traveled in the opposite direction (from upstream to downstream) and was attributed to a phenomenon known as wrong-way behavior. Finally, thermally aging the catalyst led to a slower and more localized moving hot zone.
4

Spatially and Temporally Resolving Concentration and Temperature Profiles within a Fresh and a Thermally-Aged Monolith Catalyst

Shakir, Osama January 2008 (has links)
The ability to resolve reactions within a monolith spatially and temporally is key in developing reliable kinetic models, as well as in validating proposed reaction mechanisms. In this work, two techniques, IR-thermography and spatially-resolved capillary inlet mass spectrometry (SpaciMS), were used to measure temperature and gas-phase concentrations. Specifically, they were applied to monitor the axial distribution of temperature and concentration profiles during propylene oxidation over a Pt/Al2O3 monolith-supported catalyst. Also, the effect of thermally aging the catalyst on the temperature and concentration patterns observed was investigated. During temperature programmed oxidation experiments, the data show that conversion of propylene began at the outlet, and a reaction front generated at the rear of the monolith traveled upstream, as a moving reaction zone, thereby creating a temperature wave pattern since the reaction is exothermic. The conversion was always complete downstream of this reaction zone at any point along the catalyst. When the reactor was cooled, the conversion of propylene started to drop, accompanied by a similar temperature wave pattern that traveled in the opposite direction (from upstream to downstream) and was attributed to a phenomenon known as wrong-way behavior. Finally, thermally aging the catalyst led to a slower and more localized moving hot zone.
5

Modélisation, simulation et optimisation des réacteurs de production d'acroléine à partir du propylène ou du glycérol / Modeling, simulation and optimization of reactors for acroléin production from propylene or glycerol

Lei, Minghai 03 September 2014 (has links)
Ce travail est consacré à la modélisation, simulation et optimisation des réacteurs catalytiques gaz/solide à lit fixe multitubulaire pour la production de l'acroléine à partir du propylène ou du glycérol. La première partie du travail traite de l'oxydation catalytique du propylène en acroléine. Différents modèles cinétiques et du réacteur ont été développés. Les paramètres inconnus mis en jeu sont identifiés à partir des mesures expérimentales. Un ensemble de variables opératoires qui maximisent les rendements des produits clés ont ensuite été déterminés en utilisant le modèle validé. La seconde partie du travail concerne la production d'acroléine à partir du glycérol. Elle comprend une étape de déshydratation du glycérol et une étape de régénération du catalyseur. Un modèle hétérogène bidimensionnel a été développé. Pour la régénération du catalyseur, un modèle cinétique qui permet d'identifier la concentration et les compositions initiales du coke et de prédire le processus de sa combustion a été développé et identifié à l'aide de mesures expérimentales. L'optimisation de l'étape de régénération du catalyseur a ensuite été effectuée. Pour l'étape de déshydratation, un modèle cinétique qui permet de simuler simultanément la déshydratation du glycérol, la formation du coke et la variation de l'activité du catalyseur a été développé et identifié à l'aide de mesures expérimentales. / In this work, modeling, simulation and optimization of multitubular gas/solid fixed bed catalytic reactors for acrolein production from propylene or from glycerol are investigated. The first part of the work deals with the catalytic oxidation of propylene to acrolein. Different kinetic and reactor models are developed and the unknown parameters involved are identified from experimental measurements. A set of operating variables that maximize the yield of key products then determined using the validated reactor model. The second part of the work is devoted to the production of acrolein from glycerol. This part consists of two steps: a glycerol dehydration step and a catalyst regeneration step. A two-dimensional heterogeneous model is developed. In the catalyst regeneration step, a kinetic model enabling the identification of the concentration and initial compositions of the coke and the prediction of its combustion process is developed and identified using experimental measurements. The optimization of the operating conditions of the regeneration step is then carried out. In the dehydration step, a kinetic model that allows the simultaneous simulation of glycerol dehydration, coke formation and catalyst activity variation is developed and identified by means of experimental measurements.

Page generated in 0.0823 seconds