• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Caractérisation structurale et de la liaison membranaire de la RGS9-1 Anchor Protein (R9AP)

Bernier, Sarah C. 07 December 2020 (has links)
La vision est rendue possible grâce à la conversion du signal lumineux en un signal électrique par la cascade de phototransduction visuelle, qui implique plusieurs protéines incluant la phosphodiestérase (PDE). L’inactivation des différentes protéines de la phototransduction est primordiale pour que les photorécepteurs retrouvent leur sensibilité aux changements d’intensité lumineuse. Au cours de ce processus, un complexe de protéines incluant la R9AP (RGS9-1 Anchor Protein) inactive la PDE. La R9AP permet l’ancrage d’un complexe protéique à la membrane des disques des photorécepteurs via son segment C-terminal hydrophobe. Des mutations au niveau de la séquence de la R9AP mènent à une maladie appelée bradyopsie qui se caractérise notamment par une photophobie et une difficulté à suivre des objets en mouvement. Cette maladie peut être causée par la perte de la liaison membranaire de la R9AP en raison de mutations menant à une modification de la séquence en acides aminés de son segment C-terminal. La liaison membranaire de la R9AP joue donc un rôle majeur dans l’inactivation de la PDE. Par contre, aucune donnée de liaison membranaire et structurale n’est disponible pour cette protéine. Nous avons donc initié la caractérisation de la structure et de la liaison membranaire de différentes formes de la R9AP, soit la protéine avec et sans son segment C-terminal (∆TM, R9AP∆TM) ainsi que le segment C-terminal seul. Afin d’obtenir la R9AP pure, nous avons cloné, surexprimé et purifié la R9AP∆TM en fusion avec différentes étiquettes de solubilisation/purification. Les protéines recombinantes ont été produites à l’aide d’un système d’expression bactérien. En plus de permettre d’obtenir la R9AP pure pour caractériser sa structure et sa liaison membranaire, ces travaux ont significativement contribué à faire avancer les connaissances à propos de l’utilisation des étiquettes de purification/solubilisation en fusion avec une protéine d’intérêt. En effet, nous avons effectué une étude systématique pour étudier l’impact de la conception des protéines de fusion sur la solubilité, l’expression et la purification de protéine d’intérêt. Il s’agit de la première étude systématique évaluant l’effet du positionnement et de l’identité des différentes étiquettes de purification/solubilisation sur ces paramètres. Également, la production des protéines recombinantes a permis d’identifier un site alternatif d’initiation de la traduction dans la séquence de l’étiquette GST (glutathione S-transférase) qui cause l’expression d’une protéine de fusion tronquée. Cette observation aura certainement un fort impact compte tenu de l’utilisation répandue de l’étiquette GST. Concernant les résultats obtenus avec la R9AP, des données de centrifugation ont montré que la protéine complète est beaucoup moins soluble que la R9AP∆TM, ce qui suggère un rôle important du segment C-terminal hydrophobe dans la solubilité de cette protéine. Ainsi, seulement la structure et la liaison membranaire de la R9AP∆TM ont pu être investiguées dans le cadre de cette thèse. Des mesures par dichroïsme circulaire et spectroscopie infrarouge ont montré que la R9AP∆TM ainsi que le peptide C-terminal sont majoritairement constitués d’hélices alpha, ce qui appuie les prédictions structurales de cette protéine et un rôle d’ancrage membranaire de son segment C-terminal. Également, les mesures de liaison membranaire à l’aide des monocouches de Langmuir ont montré que ce segment C-terminal seul possède une forte affinité pour la majorité des phospholipides qui sont représentatifs de la composition lipidique des photorécepteurs. En revanche, la R9AP sans son segment transmembranaire a montré une faible affinité pour la majorité de ces phospholipides. Ainsi, nos travaux suggèrent fortement que la spécificité de liaison membranaire de la R9AP est en majorité dictée par son segment C-terminal, ce qui supporte son rôle important dans l’ancrage du complexe protéique aux membranes des disques des photorécepteurs et dans la bradyopsie. / Visual phototransduction involves many proteins including phosphodiesterase, which leads to photoreceptor hyperpolarization and then signal transmission to the brain. Inactivation of the different proteins involved in this process is essential such that photoreceptors remain sensitive to changes in light intensity. In the course of this inactivation, a protein complex including R9AP (RGS9-1 Anchor Protein) inactivates phosphodiesterase (PDE). R9AP anchors a protein complex to disk membranes of the photoreceptor outer segments most likely by use of its C-terminal hydrophobic domain. Mutations in the coding sequence of R9AP lead to a visual disease called bradyopsia, which results in problems with adjusting to light variations and difficulties to follow moving objects. This disease can be caused by the loss of the membrane binding of R9AP as a result of mutations that modify the amino acid sequence of its C-terminal domain. Membrane binding of R9AP thus plays a major role in the inactivation process of PDE. However, membrane binding and structural data are still lacking for this particular protein. We have thus initiated the characterization of the structure and membrane binding of R9AP, including the fulllength protein, R9AP without its C-terminal domain (R9AP∆TM), as well as its Cterminal domain alone. In order to get pure R9AP, we have cloned, overexpressed and purified R9AP∆TM in fusion with solubility-enhancing/purification tags. Recombinant proteins were expressed using a bacterial expression system. This study allowed us to develop a procedure to obtain pure R9AP∆TM as well as to significantly improve our understanding of the use of fusion proteins. Indeed, we have performed a systematic analysis of the impact of the design of fusion proteins on their solubility, expression and purification. This study was the first one to evaluate the effect of both the identity and the position of the tags on the solubility, expression and purification of proteins of interest. Also, the production of R9AP∆TM recombinant proteins allowed us to identify an alternative translation initiation site in the coding sequence of the GST (glutathione S-transferase) tag, which results in the expression of a truncated fusion protein. This finding will certainly have an important impact when considering the extensive use of the GST tag. Results have shown that the R9AP∆TM protein is much more soluble than the fulllength protein, which suggests a major role of the C-terminal domain of R9AP for its solubility. Thus, the structure and the membrane binding of R9AP∆TM have been investigated within the scope of this thesis. Infrared spectroscopy as well as circular dichroism measurements have allowed determining that R9AP∆TM as well as the C-terminal domain adopt an alpha-helical structure, which is in good agreement with both the predicted structure of R9AP and the transmembrane role of its C-terminal domain. Also, Langmuir monolayer measurements revealed that the C-terminal segment has a high affinity for most of the phospholipids found in photoreceptor membranes. In contrast, R9AP∆TM has a low affinity for these phospholipids. Thus, our results demonstrate that the membrane binding of R9AP is highly dependent on its C-terminal segment, which is consistent with its important role in anchoring the protein complex to disk membranes of the photoreceptor outer segments and in bradyopsia.
2

Étude de l'infection par le métapneumovirus humain : facteurs de virulence et développement de vaccins vivants atténués

Dubois, Julia 26 April 2019 (has links)
Le métapneumovirus humain (hMPV) est un virus responsable d’infections aiguës des voies respiratoires telles que des bronchiolites, des bronchites ou des pneumonies, principalement chez les populations à risques que sont les jeunes enfants de moins de 5ans, ainsi que les personnes âgées ou immunodéprimées. Découvert en 2001, ce virus et sa pathogénèse ne restent encore aujourd’hui que partiellement caractérisés. De ce fait et malgré les besoins, il n’y a aucun vaccin ou traitement thérapeutique spécifique et efficace contre le HMPV disponible sur le marché. Dans ce contexte, mon projet de thèse s’est articulé autour de deux axes principaux: (i) L’étude de la protéine de fusion F du virus hMPV, protéine majeure antigénique de surface et responsable de l’entrée du virus dans la cellule cible. Elle a pour particularité d’induire de manière autonome la fusion membranaire in vitro et d’être associée à des effets cytopathiques variable selon les souches virales. De par son rôle clé pour le virus hMPV, la protéine F a déjà fait l’objet de plusieurs études structurales et fonctionnelles mais les déterminants de cette activité fusogénique ne sont pas encore entièrement caractérisés. Nous nous sommes donc intéressés à l’identification de déterminants du phénotype viral hyperfusogénique, localisés dans les domaines heptad repeats de la protéine F du hMPV. (ii) L’atténuation de deux souches virales cliniques (CAN98-75 et C-85473) par délétion de gènes accessoires dans le but de développer des candidats vaccinaux adaptés aux enfants en bas âge. Différents virus ont été générés par génétique inverse et les délétions des gènes accessoires SH et G dans les deux fonds génétiques viraux ont été étudiées pour leur impact sur l’infectivité, la réplication et la pathogénèse virale in vitro et in vivo ainsi que leur contribution pour le développement de virus atténués candidats vaccinaux. / Human metapneumovirus (hMPV) is a major pathogen responsible of acute respiratory tract infections, such as bronchiolitis or pneumonia, affecting especially infants, under five years old, elderly individuals and immunocompromised adults. Identified since2001, this virus and its pathogenes is still remain largely unknown and no licensed vaccines or specific antivirals against hMPV are currently available. In this context, my research project was built over two main subjects: (i) The study of the fusion F glycoprotein which is the major antigenic protein of hMPV and is responsible of viral entry into host cell. By its crucial role for the virus, the F protein has already been characterized in several structural and/or functional studies. Thus, it has been described that the hMPV F protein induces membrane fusion autonomously, resulting in variable cytopathic effects in vitro, in a strain-dependent manner. However, as the determinants of the hMPV fusogenic activity are not well characterized yet, we focused on identification of some of these, located in heptad repeats domains of the protein. (ii) The evaluation of hMPV SH and G gene deletion for viral attenuation. Live-attenuated hMPV vaccine candidates for infants’ immunization has been constructed thank to this deletion approach at the beginning of hMPV vaccine development efforts. Despite encouraging results, these candidates have not been further characterized and the importance of the viral background has not been evaluated.
3

Transduction de protéines dans le développement d'un traitement pour la dystrophie musculaire de Duchenne

Caron, Nicolas 11 April 2018 (has links)
La dystrophie musculaire de Duchenne (DMD) est une maladie causée par l’absence de dystrophine, qui se manifeste par une dégénérescence progressive des muscles squelettiques et cardiaque. Les garçons atteints ont une espérance de vie d’environ 20 ans. Même si la prise de certains médicaments peut ralentir la progression de la maladie, il n’existe à ce jour aucune thérapie curative. La transplantation autologue de myoblastes génétiquement corrigés peut restaurer l’expression de la dystrophine, mais les myoblastes des patients DMD ont une capacité proliférative très limitée. Leur prolifération nécessite l'immortalisation avec un oncogène viral, un processus augmentant les risques associés à la transplantation de myoblastes. Les protéines fusionnées au domaine de transduction de Tat peuvent transduire les cellules en culture et plusieurs tissus in vivo. La transduction de protéines pourrait s’avérer utile dans le développement de nouvelles approches thérapeutiques. Nos objectifs étaient de tester la capacité des protéines de fusion Tat à transduire les fibres musculaires, de mieux comprendre le mécanisme de transduction, d’optimiser le ciblage efficace des cellules en culture et de développer des outils permettant l’immortalisation transitoire des myoblastes avant leur transplantation. In vivo, nos travaux indiquent que les fibres musculaires résistent à l’internalisation des protéines de fusion Tat, qui se retrouvent en périphérie associées à la matrice extracellulaire. In vitro, la distribution intracellulaire ponctuée, la cinétique d’internalisation, la sensibilité aux basses températures et l’augmentation fonctionnelle exercée par les agents lysosomotropiques révèlent un mécanisme d’endocytose classique. Ces données suggèrent que les protéines de fusion Tat, entrent par la voie endosomale, évitent les lysosomes, et sont ensuite séquestrées en périphérie du noyau. Un trafic intracellulaire inadéquat serait le principal facteur limitant l’efficacité de l’internalisation fonctionnelle des cargos fusionnés au domaine de transduction de Tat. Cette meilleure compréhension du mécanisme d’internalisation des protéines de fusion Tat, nous permit de développer une méthode efficace pour immortaliser de façon réversible les myoblastes d'un patient DMD. En utilisant un protéine de fusion Tat-Cre, nous avons déimmortalisé des myoblastes DMD transformés par l'AgT flanqué de sites LoxP. Cette technique permet de proliférer extensivement les myoblastes DMD, tout en rendant plus sécuritaire la déimmortalisation. / Duchenne muscular dystrophy (DMD) is caused by the absence of dystrophin and leads to progressive weakness in heart and skeletal muscles. Affected boys can only hope to live for 20 years since there is still no effective therapy for DMD. Autologous transplantation of genetically modified myoblasts can restore dystrophin expression, but the rapid death, the specific immune response and limited cellular migration severely limit the efficiency of the treatment. Immortalization, although a risky procedure, is necessary to proliferate myoblasts isolated from dystrophic patients, since by age five; their myogenic cells are practically senescent. Proteins and cargos fused to the Tat protein (HIV) can be internalized in cells and living tissue. The mechanism of Tat internalization is still misunderstood and controversial. Our objectives were to test the susceptibility of muscle fibers to be transduced by Tat fusion proteins, to better understand the mechanism of entry of Tat fusions, to optimize intracellular delivery and to develop techniques allowing the immortalization reversal of myoblasts using Tat-fusion proteins. The low susceptibility of muscle fibers to be transduced and the strong interaction between Tat-fusion proteins and the extracellular matrix surrounding muscle fibers resulted in poor protein delivery. Our work shows that the nuclear localization signal comprised in Tat is not sufficient to confer nuclear delivery to eGFP. The punctuate intracellular distribution, the internalization kinetics, the inhibitory effect of low temperatures and the functional increase exerted by lysosomotropic agents are coherent with a classical endocytosis internalisation mechanism. Our data suggests that Tat-fusion proteins proceed through the endosomal pathway, avoid lysosomes and are then sequestered in the periphery of the nucleus. Hence, improper intracellular trafficking is the main factor limiting the efficiency of Tat-mediated protein internalization. With a better understanding of this internalization mechanism, we were able to optimize the delivery of a Tat-Cre fusion protein to mediate the complete and efficient removal of an oncogene necessary for the proliferation of myoblasts isolated from DMD patients. Therefore this technique should help in the design of a successful treatment based on the autologous transplantation genetically-modified cells.

Page generated in 0.0645 seconds