• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Functional investigation of the efflux pump MexA–MexB-OprM of Pseudomonas aeruginosa / Etude fonctionnelle de la pompe d’efflux MexA-MexB-OprM de Pseudomonas aeruginosa

Verchère, Alice 27 November 2014 (has links)
L’efflux actif, qui permet aux bactéries d’exporter les antibiotiques vers le milieu extérieur est l’un des mécanismes majeurs de résistance aux antibiotiques. L’une des pompes d’efflux de Pseudomonas aeruginosa, MexA-MexB-OprM, est constituée de trois protéines : i) MexA, une protéine membranaire de fusion qui se trouve dans le périplasme ; ii) MexB qui se trouve dans la membrane interne et qui reconnaît l’antibiotique et initie son transport grâce à la force protomotrice et iii) OprM un canal qui se trouve dans la membrane externe. Durant ma thèse, j’ai mis au point un test fonctionnel pour MexA et MexB. Ce test est basé sur la coreconstitution de ces protéines avec la bactériorhodopsine, une protéine membranaire qui génère un gradient de proton après activation par la lumière. L’activité de MexB est suivie de manière indirecte via la mesure du pH. En mesurant le pH à l’intérieur des liposomes, on peut connaître l’activité de MexB puisque ce dernier utilise la force protomotrice pour transporter ses substrats. Une mesure fiable du pH peut être obtenue grâce à la pyranine dont la fluorescence varie avec le pH. Grâce à ce test, j’ai prouvé que MexB possède une activité basale qui ne dépend pas de la présence de substrat et que l’activité de MexB devient optimale quand cette dernière est reconstituée en présence de MexA. Dans un deuxième temps, j’ai mis au point un test fonctionnel pour la pompe d’efflux entière. Pour cela, je prépare deux types distincts de protéoliposomes. Dans le premier type de liposome, j’encapsule de la pyranine, (pour suivre l’activité de MexB) et un substrat de MexB qui est un agent intercalant de l’ARN. Ce substrat est faiblement fluorescent dans un environnement aqueux et fortement fluorescent lorsqu’il est intercalé dans l'ARN. MexB et MexA sont reconstitués dans ces liposomes. Dans le deuxième type de liposomes, je reconstitue OprM et j’encapsule de l’ARN. Ces deux types de liposomes sont alors mélangés. Lorsque la pompe s’assemble et qu’il y a un transport actif à travers cette dernière, deux phénomènes sont observés: la diminution de la fluorescence de la pyranine (car MexB fait entrer des protons dans le premier type de liposome pour transporter le substrat) et l’augmentation de la fluorescence du substrat car ce dernier s’intercale dans l’ARN se trouvant dans le deuxième type de liposome. En mélangeant les deux types de liposomes, j’obtiens une preuve de la reconstitution in vitro de la pompe entière et j’ai mis en évidence qu’OprM s’ouvre en présence de MexA et MexB et que sa présence augmente l’activité de MexB. / Among the various mechanisms developed by the bacteria to counter to the effect of antibiotics, active efflux is on the front line. In Pseudomonas aeruginosa, a Gram negative bacteria, efflux transporters are organized as multicomponent systems where MexB, the pump located in the inner membrane, works in conjunction with MexA, a periplasmic protein, and OprM, an outer membrane protein. MexB is a proton motive force-dependent pump with broad substrate specificity. During my PhD, I have designed an original activity assay for MexB and MexA. The pump is coreconstituted into proteoliposomes together with bacteriorhodopsin (BR), a light-activated proton pump. In this system, upon illumination with visible light, the photo-induced proton gradient created by the BR is shown to be coupled to the active transport of substrates through the pump. The activity of MexB is monitored indirectly. Since MexB uses the protomotive force to transport antibiotics, one can determine substrate transport though MexB by monitoring the pH inside the liposomes. For that purpose, pyranine, a fluorescent probe whose fluorescence yield increases with increasing pH, is encapsulated inside the liposomes. This test makes the investigation of the pump possible. In the absence of MexA, MexB has a basal activity which is not substrate-dependent. Once MexB is reconstituted together with MexA, its activity is specific and substrate-dependent. Then I worked on the reconstitution of the whole efflux pump. For this, I prepare two different kinds of liposomes: i) Liposomes with reconstituted MexA and MexB in which pyranine and a nucleic acid intercalating agent are encapsulated, ii) Liposomes with reconstituted OprM and encapsulated RNA. The activity of MexB is monitored thanks to the addition of EthB, a substrate of MexB, that is poorly fluorescent in aqueous medium and highly fluorescent when intercalated into RNA. Upon generation of a pH gradient, I observe two concomitant phenomena: the decrease of pyranine fluorescence, as MexB is using protons to transport the substrate, and the increase of the fluorescence of the RNA intercalating agent as a result of its interaction with RNA. I have successfully assembled the efflux pump and monitored transport through it from one liposome to the other. I have demonstrated that OprM needs to interact with MexA and MexB in order to open and that MexB activity is accelerated when the pump is assembled.
2

Mise en place d’un nouveau test de perméabilité membranaire à l’aide de la glycoprotéine-P reconstituée dans des protéoliposomes

Flandrin, Aurore 08 1900 (has links)
Les membranes cellulaires jouent un rôle important dans l’absorption des médicaments et la distribution de ceux-ci dans le corps humain. Elles contiennent différents transporteurs membranaires qui sont responsables des profils pharmacocinétiques, d’innocuité et d’efficacité des xénobiotiques. Lors du développement d’un médicament, il s’avère donc indispensable, de prédire l’interaction des nouveaux composés avec les transporteurs présents dans l’organisme. Le but du projet de recherche est de créer un nouvel outil pour étudier le comportement de la glycoprotéine-P (P-gp), un transporteur membranaire responsable du rejet de nombreux composés, sur différents médicaments. Pour cela, un modèle non cellulaire est développé en utilisant des protéoliposomes : des liposomes dans lesquels des transporteurs sont incorporés. La méthodologie consiste tout d’abord à produire, extraire et purifier la protéine d’intérêt à partir de deux systèmes d’expression : MDCK-MDR1 (cellules de chien transfectées avec le gène humain MDR1) et Pichia pastoris (levures) fin de déterminer les avantages et les limites de ces deux types cellulaires. Différentes méthodes de reconstitution dans des protéoliposomes ont ensuite été testées avec la P-gp obtenue. Puis, l’activité ATPasique de la P-gp reconstituée a été évaluée en présence de différents substrats. Les protocoles de culture cellulaire, d’extraction et de purification des deux systèmes d’expression ont été implémentés avec succès au sein du laboratoire. Les résultats montrent que les rendements obtenus sont supérieurs avec les levures qu’avec les cellules de mammifère. En outre, Pichia pastoris offre les avantages d’être facile et rapide à cultiver et peu couteux. Les premiers résultats d’activité ATPasique obtenus avec la P-gp reconstituée en protéoliposomes étaient prometteurs mais n’ont pas été reproduits en raison de la dégradation de la protéine membranaire. Les prochaines études du projet porteront sur un autre transporteur membranaire de la famille ABC, BCRP, une protéine de plus petite taille qui devrait montrer une plus grande stabilité pour mener à bien les tests. / Cellular membranes play an important role in the absorption and distribution of drugs in the human body. They contain different membrane transporters, which are responsible for the pharmacokinetic properties of drugs, as well as the safety and efficiency of their diffusion. When developing a new drug, it is thus of utmost importance to study the way that it will interact with the transporters present within the body. The aim of this study was to evaluate a new tool for measuring permeability in order to understand the function and mecanisms of P-glycoprotein (P-gp). P-gp is a transporter that is responsible for the rejection of many different compounds found in various drugs. This study thus seeks to use proteoliposomes to develop non-cellular models of membrane permeability including efflux and uptake transporters. This novel model of permeability will be utilized to study the underlying mechanisms of membrane permeability to xenobiotics. The human P-gp was produced, extracted and purified using two different expression systems: MDCK-MDR1 cells (Madin-Darby canine kidney cells transfected with the human MDR1 gene) and Pichia pastoris. Both expression systems were studied in order to compare the strengths and weaknesses of each system. We then tested different methods of reconstituting the P-gp into protéoliposomes. Finally, we measured the level of ATPase activity using different substrates. The protocols of cell culture, extraction and purification of both expression systems were accomplished in a laboratory during this study. These results demonstrated that expressing P-gp using yeast was more effective than that of mammalian cells. Furthermore, working with Pichia pastoris offers multiple advantages: expressing P-gp was easier, faster and cheaper than working with mammalian cells. The first measurements of ATPase activity using reconstituted P-gp proteoliposomes were promising, however they proved difficult to reproduce due to the possible degradation of the membrane protein.Further studies in this project will look to evaluate another ABC membrane transporter, BCRP. This smaller protein should prove to be more stable than P-gp, facilitating experimentation.

Page generated in 0.0646 seconds