• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • Tagged with
  • 11
  • 11
  • 11
  • 7
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Discovery of Novel Cross-Talk between Protein Arginine Methyltransferase Isoforms and Design of Dimerization Inhibitors

Canup, Brandon S 17 April 2013 (has links)
Protein arginine methyltransferase, PRMT, is a family of epigenetic enzymes that methylate arginine residues on histone and nonhistone substrates which result in a monomethylation, symmetric dimethylation or asymmetric dimethylation via the transfer of a methyl group from S-adenosyl-L-methionine (SAM). We discovered a novel interaction between two PRMT isoforms: PRMT1 interacts and methylates PRMT6. In this study site-directed mutagenesis was performed on selected arginines identified from tandem mass spectrometric analysis to investigate major methylation sites of PRMT6 by PRMT1. In combination with radiometric methyltransferase assays, we determined two major methylation sites. Methylations at these sites have significant effects on the nascent enzymatic activity of PRMT6 in H4 methylation. PRMTs have the ability to homodimerize which have been linked to methyltransferase activity. We designed dimerization inhibitors (DMIs) to further investigate the need for dimerization for enzyme activity. Preliminary results suggest that the monomeric form of PRMT1 retains methyltransferase activity comparable to that of the uninhibited PRMT1.
2

Protein Arginine Methyltransferase Expression, Localization, and Activity During Disuse-induced Skeletal Muscle Plasticity / PRMT BIOLOGY DURING SKELETAL MUSCLE DISUSE

Stouth, Derek W. January 2017 (has links)
PRMT biology during skeletal muscle disuse. / Protein arginine methyltransferase 1 (PRMT1), PRMT4 (also known as co-activator-associated arginine methyltransferase 1; CARM1), and PRMT5 are critical components of a diverse set of intracellular functions. Despite the limited number of studies in skeletal muscle, evidence strongly suggests that these enzymes are important players in the regulation of phenotypic plasticity. However, their role in disuse-induced muscle remodelling is unknown. Thus, we sought to determine whether denervation-induced muscle disuse alters PRMT expression and activity in skeletal muscle within the context of early signaling events that precede muscle atrophy. Mice were subjected to 6, 12, 24, 72, or 168 hours of unilateral hindlimb denervation. The contralateral limb served as an internal control. Muscle mass decreased by ~30% following 168 hours of disuse. Prior to atrophy, the expression of muscle RING finger 1 and muscle atrophy F-box were significantly elevated. The expression and activities of PRMT1, CARM1, and PRMT5 displayed differential responses to muscle disuse. Peroxisome proliferator-activated receptor-γ coactivator-1α, AMP-activated protein kinase (AMPK), and p38 mitogen-activated protein kinase expression and activation were altered as early as 6 hours after denervation, suggesting that adaptations in these molecules are among the earliest signals that precede atrophy. AMPK activation also predicted changes in PRMT expression and function following disuse. Our study indicates that PRMTs are important for the mechanisms that precede, and initiate muscle remodelling in response to neurogenic disuse. / Thesis / Master of Science (MSc) / Skeletal muscle is a plastic tissue that is capable of adapting to various physiological demands. Previous work suggests that protein arginine methyltransferases (PRMTs) are important players in the regulation of skeletal muscle remodelling. However, their role in disuse-induced muscle plasticity is unknown. Therefore, the purpose of this study was to investigate the role of PRMTs within the context of early, upstream signaling pathways that mediate disuse-evoked muscle remodelling. We found differential responses of the PRMTs to muscle denervation, suggesting a unique sensitivity to, or regulation by, potential upstream signaling pathways. AMP-activated protein kinase (AMPK) was among the molecules that experienced a rapid change in activity following disuse. These alterations in AMPK predicted many of the modifications in PRMT biology during inactivity, suggesting that PRMTs factor into the molecular mechanisms that precede neurogenic muscle atrophy. This study expands our understanding of the role of PRMTs in regulating skeletal muscle plasticity.
3

PRMT Biology During Acute Exercise

vanLieshout, Tiffany January 2017 (has links)
Protein arginine methyltransferase 1 (PRMT1), -4 (also known as coactivator-associated arginine methyltransferase 1; CARM1), and -5 catalyze the methylation of arginine residues on target proteins. In turn, these marked proteins mediate a variety of biological functions. By regulating molecules that are critical to the remodelling of skeletal muscle phenotype, PRMTs may influence skeletal muscle plasticity. Our study tests the hypothesis that the intracellular signals required for muscle adaptation to exercise will be associated with the induction of PRMT expression and activity. C57BL/6 mice were assigned to one of three experimental groups: sedentary (SED), acute bout of exercise (0PE), or acute exercise followed by 3 hours of recovery (3PE). The mice in the exercise groups performed a single bout of treadmill running at 15 m/min for 90 minutes. We observed that PRMT gene expression and global enzyme activity are muscle- specific, generally being higher in slow, oxidative muscle, as compared to faster, more glycolytic tissue. Despite the activation of canonical exercise-induced signalling involving AMPK and PGC-1α, PRMT expression and activity at the whole muscle level were unchanged. However, subcellular analysis revealed the exercise-evoked myonuclear translocation of PRMT1 prior to the nuclear translocation of PGC-1α, which colocalizes the proteins within the organelle after exercise. Acute physical activity also augmented the targeted methyltransferase activities of CARM1, PRMT1, and -5 in the myonuclear compartment, suggesting that PRMT-mediated histone arginine methylation is an integral part of the early signals that drive skeletal muscle plasticity. In summary, our data supports the emergence of PRMTs as important players in the regulation of skeletal muscle plasticity. / Thesis / Master of Science (MSc) / Skeletal muscle is a plastic tissue that can adapt to various physiological demands. Previous work suggests that protein arginine methyltransferases (PRMTs) are important in the regulation of skeletal muscle remodeling. However, their role in exercise-induced skeletal muscle plasticity is unknown. Therefore, the purpose of this study was to investigate the association between the intracellular signals required for muscle adaption and various metrics of PRMT biology. Our data demonstrate that PRMTs exhibit muscle-specific expression and function in mice. The movement of PRMT1 into myonuclei increased following exercise, while the specific methylation status of PRMT targets were also elevated. Overall, our data suggests that muscle-specific PRMT expression may be important for the determination and/or maintenance of different fiber type characteristics. Moreover, distinct PRMT cellular localization and methyltransferase activity may be key signals that contribute to skeletal muscle phenotypic plasticity.
4

CHARACTERIZING PROTEIN ARGININE METHYLTRANSFERASE EXPRESSION AND ACTIVITY DURING MYOGENESIS / CHARACTERIZING PRMT BIOLOGY DURING MYOGENESIS

Shen, Nicole January 2017 (has links)
Despite the emerging importance of protein arginine methyltransferases (PRMTs) in regulating skeletal muscle plasticity, the biology of these enzymes during muscle development remains poorly understood. Therefore, our purpose was to investigate PRMT1, -4, and -5 expression and function in skeletal muscle cells during the phenotypic remodeling elicited by myogenesis. C2C12 muscle cell maturation, assessed during the myoblast stage, and during days 1, 3, 5, and 7 of differentiation, was employed as an in vitro model of myogenesis. We observed PRMT-specific patterns of expression and activity during myogenesis. PRMT4 and -5 gene expression was unchanged, while PRMT1 mRNA and protein content were significantly induced. Cellular monomethylarginines and symmetric dimethylarginines, indicative of global and type II PRMT activities, respectively, remained steady during development, while type I PRMT activity indicator asymmetric dimethylarginines increased through myogenesis. Histone 4 arginine 3 (H4R3) and H3R17 contents were elevated coincident with the myonuclear accumulation of PRMT1 and -4. Collectively, this suggests that PRMTs are methyl donors throughout myogenesis and demonstrate specificity for their protein targets. Cells were then treated with TC-E 5003 (TC-E), a selective inhibitor of PRMT1 in order to specifically examine the enzymes role during myogenic differentiation. TC-E treated cells exhibited decrements in muscle differentiation, which were consistent with attenuated mitochondrial biogenesis and respiratory function. In summary, this study increases our understanding of PRMT1, -4, and -5 biology during the plasticity of skeletal muscle development. Our results provide evidence for a role of PRMT1, via a mitochondrially-mediated mechanism, in driving the muscle differentiation program. / Thesis / Master of Science (MSc) / Protein arginine methyltransferases (PRMTs) are responsible for many important functions in skeletal muscle. However, significant knowledge gaps exist with respect to PRMT expression and activity during conditions of muscle remodeling. Therefore, the purpose of this Thesis was to investigate PRMT biology throughout skeletal muscle development. Mouse muscle cells were employed to examine characteristics of PRMT1, -4, and -5 at numerous timepoints during myogenesis. PRMTs exhibited distinct patterns of gene expression and activity during muscle maturation. A PRMT1 inhibitor (TC-E) was utilized to investigate the role of this enzyme during myogenesis. Muscle differentiation was impaired in TC-E-treated cells, which coincided with reduced mitochondrial biogenesis and respiratory function. Altogether, these results suggest a PRMT-specific pattern of expression and activity during myogenesis. Furthermore, PRMT1 plays a crucial role in skeletal muscle differentiation via a mitochondrially-mediated mechanism. Our study provides a more comprehensive view on the role of PRMTs in governing skeletal muscle plasticity.
5

Protein Arginine Methyltransferase 5 as a Driver of Lymphomagenesis

Smith, Porsha L. 21 December 2016 (has links)
No description available.
6

New Roles for Arginine Methylation in RNA Metabolism and Cancer

Goulet, Isabelle 05 October 2011 (has links)
Because it can expand the range of a protein’s interactions or modulate its activity, post-translational methylation of arginine residues in proteins must be duly coordinated and ‘decoded’ to ensure appropriate cellular interpretation of this biological cue. This can be achieved through modulation of the enzymatic activity/specificity of the protein arginine methyltransferases (PRMTs) and proper recognition of the methylation ‘mark’ by a subset of proteins containing ‘methyl-sensing’ protein modules known as ‘Tudor’ domains. In order to gain a better understanding of these regulatory mechanisms, we undertook a detailed biochemical characterization of the predominant member of the PRMT family, PRMT1, and of the novel Tudor domain-containing protein 3 (TDRD3). First, we found that PRMT1 function can be modulated by 1) the expression of up to seven PRMT1 isoforms (v1-7), each with a unique N-terminal region that confers distinct substrate specificity, and by 2) differential subcellular localization, as revealed by the presence of a nuclear export sequence unique to PRMT1v2. Second, our findings suggest that TDRD3 is recruited to cytoplasmic stress granules (SGs) in response to environmental stress potentially by engaging in methyl-dependent protein-protein interactions with proteins involved in the control of gene expression. We also found that arginine methylation may serve as a general regulator of overall SG dynamics. Finally, we uncovered that alteration of PRMT1, TDRD3, and global arginine methylation levels in breast cancer cells may be closely associated with disease progression and poor prognosis. Therefore, further studies into the pathophysiological consequences ensuing from misregulation of arginine methylation will likely lead to the development of novel strategies for the prevention and treatment of breast cancer.
7

New Roles for Arginine Methylation in RNA Metabolism and Cancer

Goulet, Isabelle 05 October 2011 (has links)
Because it can expand the range of a protein’s interactions or modulate its activity, post-translational methylation of arginine residues in proteins must be duly coordinated and ‘decoded’ to ensure appropriate cellular interpretation of this biological cue. This can be achieved through modulation of the enzymatic activity/specificity of the protein arginine methyltransferases (PRMTs) and proper recognition of the methylation ‘mark’ by a subset of proteins containing ‘methyl-sensing’ protein modules known as ‘Tudor’ domains. In order to gain a better understanding of these regulatory mechanisms, we undertook a detailed biochemical characterization of the predominant member of the PRMT family, PRMT1, and of the novel Tudor domain-containing protein 3 (TDRD3). First, we found that PRMT1 function can be modulated by 1) the expression of up to seven PRMT1 isoforms (v1-7), each with a unique N-terminal region that confers distinct substrate specificity, and by 2) differential subcellular localization, as revealed by the presence of a nuclear export sequence unique to PRMT1v2. Second, our findings suggest that TDRD3 is recruited to cytoplasmic stress granules (SGs) in response to environmental stress potentially by engaging in methyl-dependent protein-protein interactions with proteins involved in the control of gene expression. We also found that arginine methylation may serve as a general regulator of overall SG dynamics. Finally, we uncovered that alteration of PRMT1, TDRD3, and global arginine methylation levels in breast cancer cells may be closely associated with disease progression and poor prognosis. Therefore, further studies into the pathophysiological consequences ensuing from misregulation of arginine methylation will likely lead to the development of novel strategies for the prevention and treatment of breast cancer.
8

New Roles for Arginine Methylation in RNA Metabolism and Cancer

Goulet, Isabelle 05 October 2011 (has links)
Because it can expand the range of a protein’s interactions or modulate its activity, post-translational methylation of arginine residues in proteins must be duly coordinated and ‘decoded’ to ensure appropriate cellular interpretation of this biological cue. This can be achieved through modulation of the enzymatic activity/specificity of the protein arginine methyltransferases (PRMTs) and proper recognition of the methylation ‘mark’ by a subset of proteins containing ‘methyl-sensing’ protein modules known as ‘Tudor’ domains. In order to gain a better understanding of these regulatory mechanisms, we undertook a detailed biochemical characterization of the predominant member of the PRMT family, PRMT1, and of the novel Tudor domain-containing protein 3 (TDRD3). First, we found that PRMT1 function can be modulated by 1) the expression of up to seven PRMT1 isoforms (v1-7), each with a unique N-terminal region that confers distinct substrate specificity, and by 2) differential subcellular localization, as revealed by the presence of a nuclear export sequence unique to PRMT1v2. Second, our findings suggest that TDRD3 is recruited to cytoplasmic stress granules (SGs) in response to environmental stress potentially by engaging in methyl-dependent protein-protein interactions with proteins involved in the control of gene expression. We also found that arginine methylation may serve as a general regulator of overall SG dynamics. Finally, we uncovered that alteration of PRMT1, TDRD3, and global arginine methylation levels in breast cancer cells may be closely associated with disease progression and poor prognosis. Therefore, further studies into the pathophysiological consequences ensuing from misregulation of arginine methylation will likely lead to the development of novel strategies for the prevention and treatment of breast cancer.
9

New Roles for Arginine Methylation in RNA Metabolism and Cancer

Goulet, Isabelle January 2011 (has links)
Because it can expand the range of a protein’s interactions or modulate its activity, post-translational methylation of arginine residues in proteins must be duly coordinated and ‘decoded’ to ensure appropriate cellular interpretation of this biological cue. This can be achieved through modulation of the enzymatic activity/specificity of the protein arginine methyltransferases (PRMTs) and proper recognition of the methylation ‘mark’ by a subset of proteins containing ‘methyl-sensing’ protein modules known as ‘Tudor’ domains. In order to gain a better understanding of these regulatory mechanisms, we undertook a detailed biochemical characterization of the predominant member of the PRMT family, PRMT1, and of the novel Tudor domain-containing protein 3 (TDRD3). First, we found that PRMT1 function can be modulated by 1) the expression of up to seven PRMT1 isoforms (v1-7), each with a unique N-terminal region that confers distinct substrate specificity, and by 2) differential subcellular localization, as revealed by the presence of a nuclear export sequence unique to PRMT1v2. Second, our findings suggest that TDRD3 is recruited to cytoplasmic stress granules (SGs) in response to environmental stress potentially by engaging in methyl-dependent protein-protein interactions with proteins involved in the control of gene expression. We also found that arginine methylation may serve as a general regulator of overall SG dynamics. Finally, we uncovered that alteration of PRMT1, TDRD3, and global arginine methylation levels in breast cancer cells may be closely associated with disease progression and poor prognosis. Therefore, further studies into the pathophysiological consequences ensuing from misregulation of arginine methylation will likely lead to the development of novel strategies for the prevention and treatment of breast cancer.
10

A proteome-wide screen utilizing second generation sequencing for the identification of lysine and arginine methyltransferase protein interactions

Weimann, Mareike 13 September 2012 (has links)
Proteinmethylierung spielt eine immer größere Rolle in der Regulierung zellulärer Prozesse. Die Entwicklung effizienter proteomweiter Methoden zur Detektion von Methylierung auf Proteinen ist limitiert und technisch schwierig. In dieser Arbeit haben wir einen neuen Hefe-Zwei-Hybrid-Ansatz (Y2H) entwickelt, der Proteine, die miteinander wechselwirken, mit Hilfe von Sequenzierungen der zweiten Generation identifiziert (Y2H-Seq). Der neue Y2H-Seq-Ansatz wurde systematisch mit dem Y2H-Seq-Ansatz verglichen. Dafür wurde ein Bait-Set von 8 Protein-Arginin-Methyltransferasen, 17 Protein-Lysin-Methyltransferasen und 10 Demethylasen gegen 14,268 Prey-Proteine getestet. Der Y2H-Seq-Ansatz ist weniger arbeitsintensiv, hat eine höhere Sensitivität als der Standard Y2H-Matrix-Ansatz und ist deshalb besonders geeignet, um schwache Interaktionen zwischen Substraten und Protein-Methyltransferasen zu detektieren. Insgesamt wurden 523 Wechselwirkungen zwischen 22 Bait-Proteinen und 324 Prey-Pr oteinen etabliert, darunter 11 bekannte Methyltransferasen-Substrate. Netzwerkanalysen zeigen, dass Methyltransferasen bevorzugt mit Transkriptionsregulatoren, DNA- und RNA-Bindeproteinen wechselwirken. Diese Daten repräsentieren das erste proteomweite Wechselwirkungsnetzwerk über Protein-Methyltransferasen und dienen als Ressource für neue potentielle Methylierungssubstrate. In einem in vitro Methylierungsassay wurden exemplarisch mit Hilfe massenspektrometrischer Analysen die methylierten Aminosäurereste einiger Kandidatenproteine bestimmt. Von neun getesteten Proteinen waren sieben methyliert, zu denen gehören SPIN2B, DNAJA3, QKI, SAMD3, OFCC1, SYNCRIP und WDR42A. Wahrscheinlich sind viele Methylierungssubstrate im Netzwerk vorhanden. Das vorgestellte Protein-Protein-Wechselwirkungsnetzwerk zeigt, dass Proteinmethylierung sehr unterschiedliche zelluläre Prozesse beeinflusst und ermöglicht die Aufstellung neuer Hypothesen über die Regulierung Molekularer Mechanismen durch Methylierung. / Protein methylation on arginine and lysine residues is a largely unexplored posttranslational modification which regulates diverse cellular processes. The development of efficient proteome-wide approaches for detecting protein methylation is limited and technically challenging. We developed a novel workload reduced yeast-two hybrid (Y2H) approach to detect protein-protein interactions utilizing second generation sequencing. The novel Y2H-seq approach was systematically evaluated against our state of the art Y2H-matrix screening approach and used to screen 8 protein arginine methyltransferases, 17 protein lysine methyltransferases and 10 demethylases against a set of 14,268 proteins. Comparison of the two approaches revealed a higher sensitivity of the new Y2H-seq approach. The increased sampling rate of the Y2H-seq approach is advantageous when assaying transient interactions between substrates and methyltransferases. Overall 523 interactions between 22 bait proteins and 324 prey proteins were identified including 11 proteins known to be methylated. Network analysis revealed enrichment of transcription regulator activity, DNA- and RNA-binding function of proteins interacting with protein methyltransferases. The dataset represents the first proteome-wide interaction network of enzymes involved in methylation and provides a comprehensively annotated resource of potential new methylation substrates. An in vitro methylation assay coupled to mass spectrometry revealed amino acid methylation of candidate proteins. Seven of nine proteins tested were methylated including SPIN2B, DNAJA3, QKI, SAMD3, OFCC1, SYNCRIP and WDR42A indicating that the interaction network is likely to contain many putative methyltransferase substrate pairs. The presented protein-protein interaction network demonstrates that protein methylation is involved in diverse cellular processes and can inform hypothesis driven investigation into molecular mechanisms regulated through methylation.

Page generated in 0.1318 seconds