Spelling suggestions: "subject:"1protein arginine methyltransferase"" "subject:"2protein arginine methyltransferase""
1 |
Discovery of Novel Cross-Talk between Protein Arginine Methyltransferase Isoforms and Design of Dimerization InhibitorsCanup, Brandon S 17 April 2013 (has links)
Protein arginine methyltransferase, PRMT, is a family of epigenetic enzymes that methylate arginine residues on histone and nonhistone substrates which result in a monomethylation, symmetric dimethylation or asymmetric dimethylation via the transfer of a methyl group from S-adenosyl-L-methionine (SAM). We discovered a novel interaction between two PRMT isoforms: PRMT1 interacts and methylates PRMT6. In this study site-directed mutagenesis was performed on selected arginines identified from tandem mass spectrometric analysis to investigate major methylation sites of PRMT6 by PRMT1. In combination with radiometric methyltransferase assays, we determined two major methylation sites. Methylations at these sites have significant effects on the nascent enzymatic activity of PRMT6 in H4 methylation. PRMTs have the ability to homodimerize which have been linked to methyltransferase activity. We designed dimerization inhibitors (DMIs) to further investigate the need for dimerization for enzyme activity. Preliminary results suggest that the monomeric form of PRMT1 retains methyltransferase activity comparable to that of the uninhibited PRMT1.
|
2 |
Protein Arginine Methyltransferase Expression, Localization, and Activity During Disuse-induced Skeletal Muscle Plasticity / PRMT BIOLOGY DURING SKELETAL MUSCLE DISUSEStouth, Derek W. January 2017 (has links)
PRMT biology during skeletal muscle disuse. / Protein arginine methyltransferase 1 (PRMT1), PRMT4 (also known as
co-activator-associated arginine methyltransferase 1; CARM1), and PRMT5 are
critical components of a diverse set of intracellular functions. Despite the limited
number of studies in skeletal muscle, evidence strongly suggests that these
enzymes are important players in the regulation of phenotypic plasticity. However,
their role in disuse-induced muscle remodelling is unknown. Thus, we sought to
determine whether denervation-induced muscle disuse alters PRMT expression
and activity in skeletal muscle within the context of early signaling events that
precede muscle atrophy. Mice were subjected to 6, 12, 24, 72, or 168 hours of
unilateral hindlimb denervation. The contralateral limb served as an internal
control. Muscle mass decreased by ~30% following 168 hours of disuse. Prior to
atrophy, the expression of muscle RING finger 1 and muscle atrophy F-box were
significantly elevated. The expression and activities of PRMT1, CARM1, and
PRMT5 displayed differential responses to muscle disuse. Peroxisome
proliferator-activated receptor-γ coactivator-1α, AMP-activated protein kinase
(AMPK), and p38 mitogen-activated protein kinase expression and activation
were altered as early as 6 hours after denervation, suggesting that adaptations in
these molecules are among the earliest signals that precede atrophy. AMPK
activation also predicted changes in PRMT expression and function following
disuse. Our study indicates that PRMTs are important for the mechanisms that
precede, and initiate muscle remodelling in response to neurogenic disuse. / Thesis / Master of Science (MSc) / Skeletal muscle is a plastic tissue that is capable of adapting to various
physiological demands. Previous work suggests that protein arginine
methyltransferases (PRMTs) are important players in the regulation of skeletal
muscle remodelling. However, their role in disuse-induced muscle plasticity is
unknown. Therefore, the purpose of this study was to investigate the role of
PRMTs within the context of early, upstream signaling pathways that mediate
disuse-evoked muscle remodelling. We found differential responses of the
PRMTs to muscle denervation, suggesting a unique sensitivity to, or regulation by,
potential upstream signaling pathways. AMP-activated protein kinase (AMPK)
was among the molecules that experienced a rapid change in activity following
disuse. These alterations in AMPK predicted many of the modifications in PRMT
biology during inactivity, suggesting that PRMTs factor into the molecular
mechanisms that precede neurogenic muscle atrophy. This study expands our
understanding of the role of PRMTs in regulating skeletal muscle plasticity.
|
3 |
PRMT Biology During Acute ExercisevanLieshout, Tiffany January 2017 (has links)
Protein arginine methyltransferase 1 (PRMT1), -4 (also known as coactivator-associated arginine methyltransferase 1; CARM1), and -5 catalyze the methylation of arginine residues on target proteins. In turn, these marked proteins mediate a variety of biological functions. By regulating molecules that are critical to the remodelling of skeletal muscle phenotype, PRMTs may influence skeletal muscle plasticity. Our study tests the hypothesis that the intracellular signals required for muscle adaptation to exercise will be associated with the induction of PRMT expression and activity. C57BL/6 mice were assigned to one of three experimental groups: sedentary (SED), acute bout of exercise (0PE), or acute exercise followed by 3 hours of recovery (3PE). The mice in the exercise groups performed a single bout of treadmill running at 15 m/min for 90 minutes. We observed that PRMT gene expression and global enzyme activity are muscle- specific, generally being higher in slow, oxidative muscle, as compared to faster, more glycolytic tissue. Despite the activation of canonical exercise-induced signalling involving AMPK and PGC-1α, PRMT expression and activity at the whole muscle level were unchanged. However, subcellular analysis revealed the exercise-evoked myonuclear translocation of PRMT1 prior to the nuclear translocation of PGC-1α, which colocalizes the proteins within the organelle after exercise. Acute physical activity also augmented the targeted methyltransferase activities of CARM1, PRMT1, and -5 in the myonuclear compartment, suggesting that PRMT-mediated histone arginine methylation is an integral part of the early signals that drive skeletal muscle plasticity. In summary, our data supports the emergence of PRMTs as important players in the regulation of skeletal muscle plasticity. / Thesis / Master of Science (MSc) / Skeletal muscle is a plastic tissue that can adapt to various physiological demands. Previous work suggests that protein arginine methyltransferases (PRMTs) are important in the regulation of skeletal muscle remodeling. However, their role in exercise-induced skeletal muscle plasticity is unknown. Therefore, the purpose of this study was to investigate the association between the intracellular signals required for muscle adaption and various metrics of PRMT biology. Our data demonstrate that PRMTs exhibit muscle-specific expression and function in mice. The movement of PRMT1 into myonuclei increased following exercise, while the specific methylation status of PRMT targets were also elevated. Overall, our data suggests that muscle-specific PRMT expression may be important for the determination and/or maintenance of different fiber type characteristics. Moreover, distinct PRMT cellular localization and methyltransferase activity may be key signals that contribute to skeletal muscle phenotypic plasticity.
|
4 |
CHARACTERIZING PROTEIN ARGININE METHYLTRANSFERASE EXPRESSION AND ACTIVITY DURING MYOGENESIS / CHARACTERIZING PRMT BIOLOGY DURING MYOGENESISShen, Nicole January 2017 (has links)
Despite the emerging importance of protein arginine methyltransferases (PRMTs) in regulating skeletal muscle plasticity, the biology of these enzymes during muscle development remains poorly understood. Therefore, our purpose was to investigate PRMT1, -4, and -5 expression and function in skeletal muscle cells during the phenotypic remodeling elicited by myogenesis. C2C12 muscle cell maturation, assessed during the myoblast stage, and during days 1, 3, 5, and 7 of differentiation, was employed as an in vitro model of myogenesis. We observed PRMT-specific patterns of expression and activity during myogenesis. PRMT4 and -5 gene expression was unchanged, while PRMT1 mRNA and protein content were significantly induced. Cellular monomethylarginines and symmetric dimethylarginines, indicative of global and type II PRMT activities, respectively, remained steady during development, while type I PRMT activity indicator asymmetric dimethylarginines increased through myogenesis. Histone 4 arginine 3 (H4R3) and H3R17 contents were elevated coincident with the myonuclear accumulation of PRMT1 and -4. Collectively, this suggests that PRMTs are methyl donors throughout myogenesis and demonstrate specificity for their protein targets. Cells were then treated with TC-E 5003 (TC-E), a selective inhibitor of PRMT1 in order to specifically examine the enzymes role during myogenic differentiation. TC-E treated cells exhibited decrements in muscle differentiation, which were consistent with attenuated mitochondrial biogenesis and respiratory function. In summary, this study increases our understanding of PRMT1, -4, and -5 biology during the plasticity of skeletal muscle development. Our results provide evidence for a role of PRMT1, via a mitochondrially-mediated mechanism, in driving the muscle differentiation program. / Thesis / Master of Science (MSc) / Protein arginine methyltransferases (PRMTs) are responsible for many important functions in skeletal muscle. However, significant knowledge gaps exist with respect to PRMT expression and activity during conditions of muscle remodeling. Therefore, the purpose of this Thesis was to investigate PRMT biology throughout skeletal muscle development. Mouse muscle cells were employed to examine characteristics of PRMT1, -4, and -5 at numerous timepoints during myogenesis. PRMTs exhibited distinct patterns of gene expression and activity during muscle maturation. A PRMT1 inhibitor (TC-E) was utilized to investigate the role of this enzyme during myogenesis. Muscle differentiation was impaired in TC-E-treated cells, which coincided with reduced mitochondrial biogenesis and respiratory function. Altogether, these results suggest a PRMT-specific pattern of expression and activity during myogenesis. Furthermore, PRMT1 plays a crucial role in skeletal muscle differentiation via a mitochondrially-mediated mechanism. Our study provides a more comprehensive view on the role of PRMTs in governing skeletal muscle plasticity.
|
5 |
Protein Arginine Methyltransferase 5 as a Driver of LymphomagenesisSmith, Porsha L. 21 December 2016 (has links)
No description available.
|
6 |
New Roles for Arginine Methylation in RNA Metabolism and CancerGoulet, Isabelle 05 October 2011 (has links)
Because it can expand the range of a protein’s interactions or modulate its activity, post-translational methylation of arginine residues in proteins must be duly coordinated and ‘decoded’ to ensure appropriate cellular interpretation of this biological cue. This can be achieved through modulation of the enzymatic activity/specificity of the protein arginine methyltransferases (PRMTs) and proper recognition of the methylation ‘mark’ by a subset of proteins containing ‘methyl-sensing’ protein modules known as ‘Tudor’ domains. In order to gain a better understanding of these regulatory mechanisms, we undertook a detailed biochemical characterization of the predominant member of the PRMT family, PRMT1, and of the novel Tudor domain-containing protein 3 (TDRD3). First, we found that PRMT1 function can be modulated by 1) the expression of up to seven PRMT1 isoforms (v1-7), each with a unique N-terminal region that confers distinct substrate specificity, and by 2) differential subcellular localization, as revealed by the presence of a nuclear export sequence unique to PRMT1v2. Second, our findings suggest that TDRD3 is recruited to cytoplasmic stress granules (SGs) in response to environmental stress potentially by engaging in methyl-dependent protein-protein interactions with proteins involved in the control of gene expression. We also found that arginine methylation may serve as a general regulator of overall SG dynamics. Finally, we uncovered that alteration of PRMT1, TDRD3, and global arginine methylation levels in breast cancer cells may be closely associated with disease progression and poor prognosis. Therefore, further studies into the pathophysiological consequences ensuing from misregulation of arginine methylation will likely lead to the development of novel strategies for the prevention and treatment of breast cancer.
|
7 |
New Roles for Arginine Methylation in RNA Metabolism and CancerGoulet, Isabelle 05 October 2011 (has links)
Because it can expand the range of a protein’s interactions or modulate its activity, post-translational methylation of arginine residues in proteins must be duly coordinated and ‘decoded’ to ensure appropriate cellular interpretation of this biological cue. This can be achieved through modulation of the enzymatic activity/specificity of the protein arginine methyltransferases (PRMTs) and proper recognition of the methylation ‘mark’ by a subset of proteins containing ‘methyl-sensing’ protein modules known as ‘Tudor’ domains. In order to gain a better understanding of these regulatory mechanisms, we undertook a detailed biochemical characterization of the predominant member of the PRMT family, PRMT1, and of the novel Tudor domain-containing protein 3 (TDRD3). First, we found that PRMT1 function can be modulated by 1) the expression of up to seven PRMT1 isoforms (v1-7), each with a unique N-terminal region that confers distinct substrate specificity, and by 2) differential subcellular localization, as revealed by the presence of a nuclear export sequence unique to PRMT1v2. Second, our findings suggest that TDRD3 is recruited to cytoplasmic stress granules (SGs) in response to environmental stress potentially by engaging in methyl-dependent protein-protein interactions with proteins involved in the control of gene expression. We also found that arginine methylation may serve as a general regulator of overall SG dynamics. Finally, we uncovered that alteration of PRMT1, TDRD3, and global arginine methylation levels in breast cancer cells may be closely associated with disease progression and poor prognosis. Therefore, further studies into the pathophysiological consequences ensuing from misregulation of arginine methylation will likely lead to the development of novel strategies for the prevention and treatment of breast cancer.
|
8 |
New Roles for Arginine Methylation in RNA Metabolism and CancerGoulet, Isabelle 05 October 2011 (has links)
Because it can expand the range of a protein’s interactions or modulate its activity, post-translational methylation of arginine residues in proteins must be duly coordinated and ‘decoded’ to ensure appropriate cellular interpretation of this biological cue. This can be achieved through modulation of the enzymatic activity/specificity of the protein arginine methyltransferases (PRMTs) and proper recognition of the methylation ‘mark’ by a subset of proteins containing ‘methyl-sensing’ protein modules known as ‘Tudor’ domains. In order to gain a better understanding of these regulatory mechanisms, we undertook a detailed biochemical characterization of the predominant member of the PRMT family, PRMT1, and of the novel Tudor domain-containing protein 3 (TDRD3). First, we found that PRMT1 function can be modulated by 1) the expression of up to seven PRMT1 isoforms (v1-7), each with a unique N-terminal region that confers distinct substrate specificity, and by 2) differential subcellular localization, as revealed by the presence of a nuclear export sequence unique to PRMT1v2. Second, our findings suggest that TDRD3 is recruited to cytoplasmic stress granules (SGs) in response to environmental stress potentially by engaging in methyl-dependent protein-protein interactions with proteins involved in the control of gene expression. We also found that arginine methylation may serve as a general regulator of overall SG dynamics. Finally, we uncovered that alteration of PRMT1, TDRD3, and global arginine methylation levels in breast cancer cells may be closely associated with disease progression and poor prognosis. Therefore, further studies into the pathophysiological consequences ensuing from misregulation of arginine methylation will likely lead to the development of novel strategies for the prevention and treatment of breast cancer.
|
9 |
New Roles for Arginine Methylation in RNA Metabolism and CancerGoulet, Isabelle January 2011 (has links)
Because it can expand the range of a protein’s interactions or modulate its activity, post-translational methylation of arginine residues in proteins must be duly coordinated and ‘decoded’ to ensure appropriate cellular interpretation of this biological cue. This can be achieved through modulation of the enzymatic activity/specificity of the protein arginine methyltransferases (PRMTs) and proper recognition of the methylation ‘mark’ by a subset of proteins containing ‘methyl-sensing’ protein modules known as ‘Tudor’ domains. In order to gain a better understanding of these regulatory mechanisms, we undertook a detailed biochemical characterization of the predominant member of the PRMT family, PRMT1, and of the novel Tudor domain-containing protein 3 (TDRD3). First, we found that PRMT1 function can be modulated by 1) the expression of up to seven PRMT1 isoforms (v1-7), each with a unique N-terminal region that confers distinct substrate specificity, and by 2) differential subcellular localization, as revealed by the presence of a nuclear export sequence unique to PRMT1v2. Second, our findings suggest that TDRD3 is recruited to cytoplasmic stress granules (SGs) in response to environmental stress potentially by engaging in methyl-dependent protein-protein interactions with proteins involved in the control of gene expression. We also found that arginine methylation may serve as a general regulator of overall SG dynamics. Finally, we uncovered that alteration of PRMT1, TDRD3, and global arginine methylation levels in breast cancer cells may be closely associated with disease progression and poor prognosis. Therefore, further studies into the pathophysiological consequences ensuing from misregulation of arginine methylation will likely lead to the development of novel strategies for the prevention and treatment of breast cancer.
|
10 |
Protein arginine methyltransferase 5 (PRMT5) is an essential regulator of the cellular response to ionizing radiation and a therapeutic target to enhance radiation therapy for prostate cancer treatmentJacob Louis Owens (9133214) 05 August 2020 (has links)
Prostate cancer is one of the most frequently diagnosed cancers and failure to manage localized disease contributes to the majority of deaths. Radiation therapy (RT) is a common treatment for localized prostate cancer and uses ionizing radiation (IR) to damage DNA. Although RT is potentially curative, tumors often recur and progress to terminal disease. The cellular response to RT is multidimensional. For example, cells respond to a single dose of IR by activating the DNA damage response (DDR) to repair the DNA. Targeting proteins involved in the DDR is an effective clinical strategy to sensitize cancer cells to RT. However, multiple radiation treatments, as in fractionated ionizing radiation (FIR), can promote neuroendocrine differentiation (NED). FIR-induced NED is an emerging resistance mechanism to RT and tumors that undergo NED are highly aggressive and remain incurable.<br><br> Currently, the only clinical approach that improves RT for prostate cancer treatment is androgen deprivation therapy (ADT). ADT blocks androgen receptor (AR) signaling which inhibits the repair of DNA damage. In 2017, my lab reported that targeting Protein arginine methyltransferase 5 (PRMT5) blocks AR protein expression. Therefore, targeting PRMT5 may also sensitize prostate cancer cells to RT via a novel mechanism of action.<br><br> This dissertation focuses on the role of PRMT5 in the cellular response to IR and the goal of my work is to validate PRMT5 as a therapeutic target to enhance RT for prostate cancer treatment. I demonstrate that PRMT5 has several roles in the cellular response to IR. Upon a single dose of IR, PRMT5 cooperates with pICln to function as a master epigenetic activator of DDR genes and efficiently repair IR-induced DNA damage. There is an assumption in the field that the methyltransferase activity and epigenetic function of PRMT5 is dependent on the cofactor MEP50. I demonstrate that PRMT5 can function independently of MEP50 and identify pICln as a novel epigenetic cofactor of PRMT5. During FIR, PRMT5, along with both cofactors MEP50 and pICln, are essential for initiation of NED, maintenance of NED, and cell survival. Targeting PRMT5 also sensitizes prostate cancer xenograft tumors in mice to RT, significantly reduces and delays tumor recurrence, and prolongs overall survival. Incredibly, while 100% of control mice died due to tumor burden, targeting PRMT5 effectively cured ~85% of mice from their xenograft tumor. Overall, this work provides strong evidence for PRMT5 as a therapeutic target and suggests that targeting PRMT5 during RT should be assessed clinically.<br>
|
Page generated in 0.0939 seconds