• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 4
  • 1
  • Tagged with
  • 14
  • 9
  • 9
  • 8
  • 7
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigation of the Oxidation/Reduction of PRMT1, Substrate Interactions with PRMT1, and the Role of Argining Methylation in RNA Surveillance

Nitzel, Damon V. 01 May 2013 (has links)
Protein arginine methylation is an abundant post-translational modification catalyzed by protein arginine methyltransferases (PRMTs). Arginine methylation plays important roles in a variety of cellular pathways and human diseases. PRMT1, the predominant PRMT, catalyzes approximately 85% of all protein arginine methylation in vivo. While many details of how PRMT1 functions have been uncovered through the past two decades, there are many details which remain unclear, including how arginine methylation is regulated, how PRMT1 binds substrates, and what role PRMTs play in RNA surveillance. Our recent data presented in this thesis showed that reduction of the PRMT1 enzyme, following recombinant expression and purification, changes both enzymatic activity and oligomeric state. A cysteine residue(s) was found to be responsible for the observed redox chemistry in PRMT1 and at least one parameter in the kinetic mechanism, S-adenosylmethionine (AdoMet) binding, was faster with a reduced enzyme. This work suggests exciting potential for the regulation of PRMTs in vivo by oxidative stress. In addition to studying the effects of reduction/oxidation on PRMT1, a foundation for future experiments was laid. These experiments investigate substrate recognition by PRMTs and what the role arginine methylation may play in RNA processing and surveillance. To better understand how PRMTs selectively bind a wide variety of substrates, I have designed and preliminarily characterized several Hmt1 (the S. cerevisiae homologue of PRMT1) variants. These variants will be used for crystallization trials of a homogeneous complex, containing Hmt1, AdoMet, and a peptide substrate, capable of revealing specific chemical interactions between Hmt1 and the peptide substrate. To further our understanding of Hmt1's role in RNA processing and surveillance, particularly in RNA degradation pathways, I extracted yeast RNA from both wild type and Hmt1-null cells. The RNA was probed using a S. cerevisiae whole-genome microarray. This analysis revealed that Hmt1 exhibits statistically significant effects in several broad areas including molecular function, biological processes, cellular components, and some KEGG pathways. The presented studies have revealed the exciting potential for an in vivo regulatory mechanism of PRMT1 and each study is primed for further investigation both in vivo and in vitro.
2

Transcriptional Regulation of Pregnane X Receptor by Protein Arginine Methyltransferase

Xie, Ying 2010 May 1900 (has links)
Pregnane X receptor (PXR) is a ligand-dependent transcription factor that plays an important role in xenobiotic/drug metabolism. The ligand-receptor interaction transcriptionally activates phase I and phase II enzymes, and membrane-bound transporters in a coordinated manner and ultimately leads to detoxification and excretion of the ligands. One of the direct target genes is cytochrome P450 3A4 (CYP3A4) which is responsible for metabolism of over 50% of clinically used drugs. Understanding the regulation of PXR is important for treatment of disease and avoidance of untoward drug-drug interactions. In this research, we have used various biochemical and molecular approaches to investigate factors that regulate the transcriptional activity of PXR. We have stably transfected PXR into HepG2 human liver hepatoma cells. Using these PXR-HepG2 cells, we surveyed the histone methyltransferases that interact with PXR. Based on results from co-immunoprecipitation/methyltransferase, N-terminal peptide sequencing, GST-pulldown assays, we found that protein arginine methyltransferase 1 (PRMT1) is a predominant histone methyltransferase in HepG2 cells. Evidence from other laboratories suggests that histone methylation by PRMT1 sets the stage for subsequent histone modifications such as the acetylation of histone H4. These modifications are believed to be important for transcriptional and epigenetic regulation of gene expression. We hypothesize that PRMT1 plays a role in the epigenetic changes regulated by PXR. PRMT1-dependent histone methylation changes may be involved in epigenetic cell memory where prior exposure to certain agents may alter the chromatin (or priming the chromatin) with a "primed" state which alters the subsequent magnitude or duration of gene expression. In our study, we have found that pretreatment of PXR-HepG2 cells with DMSO greatly enhanced PXR-mediated activation of CYP3A4 upon rifampicin treatment. DMSO pretreatment altered histone modifications association with the promoter of the PXR-regulated gene (CYP3A4). Inhibition of histone methylation by PRMT1 either through RNAi or the methyltransferase inhibitor (Adox) abolished the priming effects. My research results strongly indicate that PRMT1 is involved in transcriptional regulation of PXR and may be involved in epigenetic memory of liver cells where prior exposure to agents changes the subsequent detoxification responses.
3

MEF2 Isotypes During Skeletal Myogenesis

Reilly, Katherine January 2015 (has links)
The MEF2 family of transcription factors (MEF2A, MEF2C, and MEF2D) are crucial during skeletal muscle differentiation. Although the roles of MEF2D isoforms are well established, the roles of MEF2A and MEF2C are not as well understood. This thesis, we investigated the expression, localization, and function of MEF2A and MEF2C, using specific antibodies. While MEF2A is expressed in both proliferating and differentiated myoblasts, protein levels of MEF2C were only detected during differentiation. During early stages of differentiation MEF2A is expressed in both the cytoplasm and the nucleus. However during later stages of differentiation, it is localized predominately in the nucleus. MEF2C appears to be localized differently depending on which isoform is being investigated. Using an affinity purification and mass spectrometry based approach we identified PRMT1 as a unique interacting protein with MEF2A during skeletal muscle differentiation. PRMT1 is a protein arginine methyltransferase which mediates the addition of methyl groups onto various proteins including histone H4 arginine 3 (H3R4) which is associated with gene activation. Both MEF2A and PRMT1 occupy genomic targets of MEF2A. Inhibition of PRMT1 with a specific inhibitor delays C2C12 myoblast differentiation in the early stages of differentiation but no effect was observed during late stage differentiation. The MEF2 family of transcription factors show distinct but overlapping function during skeletal muscle differentiation.
4

Nouveaux rôles du complexe CCR4-NOT dans le contrôle de l'expression des gènes eucaryotes / Novel roles of CCR4-NOT complex in the control of eukaryotic gene expression

Chapat, Clément 17 September 2013 (has links)
De la synthèse des ARNm jusqu'à leur dégradation, le complexe CCR4-NOT est un régulateur essentiel de l'expression des gènes eucaryotes. CAF1 est une sous-unité catalytique qui joue un rôle central dans la fonction de ce complexe. La protéine humaine hCAF1 possède une activité déadénylase, régule la méthylation des arginines dépendante de PRMT1 et est un régulateur transcriptionnel des récepteurs nucléaires. Bien que l'ensemble des travaux publiés sur hCAF1 lui confère une place importante dans la régulation de l'expression des gènes, son mécanisme d'action et surtout les voies de signalisation qu'elle régule restent encore mal compris dans les cellules humaines. Lors de ce travail de thèse, nous avons mis en évidence une nouvelle fonction de la protéine hCAF1 comme régulateur de la voie des interférons via le contrôle du facteur de transcription STAT1 et la dégradation de ses ARNm cibles. L'identification de hCAF1 comme régulateur de l'activité de STAT1 et de la réponse aux interférons est très importante car des activations anormales de ces voies sont associées à de nombreuses pathologies telles que le cancer ou des maladies immunitaires. En parallèle, nous avons caractérisé un nouvel isoforme nommé hCAF1v2 produit par le gène humain Caf1 suite à un évènement d'épissage alternatif. Nos résultats indiquent que hCAF1v2 présente une divergence fonctionnelle vis-à-vis de hCAF1 puisqu'elle ne possède pas d'activité déadénylase intrinsèque et s'avère requise pour la régulation de la méthylation des arginines via son interaction avec l'enzyme PRMT1. L'ensemble des résultats obtenus identifient une nouvelle voie de signalisation régulée par la protéine hCAF1 dans les cellules humaines et permettent de mieux comprendre l'implication du complexe CCR4-NOT dans les mécanismes de régulation de l'expression des gènes / The multi-subunit CCR4-NOT complex has been implicated in all aspects of the mRNA life cycle, from synthesis of mRNAs in the nucleus to their degradation in the cytoplasm. The CAF1 protein is a catalytic subunit which plays a central role inside the complex. Human CAF1 is a deadenylase, modulates arginine methylation, and is a transcriptional cofactor of several nuclear receptors. The main objective of the thesis was to elucidate the molecular mechanism of hCAF1- mediated gene expression. We reported that hCAF1 is an important negative regulator of the interferon pathway and that hCAF1 is associated in the cytoplasm of resting cells with STAT1, a crucial transcription factor of this pathway. We found that hCAF1 participates in the extinction of the IFN signal via its deadenylase activity, by speeding up the degradation of some STAT1-induced mRNAs. Our findings are important because abnormal activations of this pathway are frequently associated with cancer and auto-immune diseases. In parallel, we characterized a novel isoform called hCAF1v2 produced by alternative splicing of the Caf1 gene. We reported that hCAF1v2 displays divergent functions compared with hCAF1. In fact hCAF1v2 does not have a deadenylase activity and is preferentially associated with PRMT1 to modulate arginine methylation. Altogether, our findings identify a new signalling pathway which is regulated by hCAF1, and reveal novel mechanisms utilized by the CCR4-NOT complex to control gene expression
5

La phosphorylation de CARM1 empêche l'interaction entre PRMT1 et CARM1, deux « Protein Arginine MethylTransférases » impliquées dans la prolifération dans le cancer du poumon / CARM1 phosphorylation prevents interaction between PRMT1 and CARM1, two <<protein arginine methyltransferases>> involved in proliferation in lung cancer

Akoum, Rania El 16 October 2013 (has links)
CARM1 et PRMT1 sont 2 Protein Arginine MethylTransferases (PRMTs) impliquées dans la prolifération et dérégulées dans le cancer. La dimérisation est une caractéristique commune aux PRMTs. PRMT1 et CARM1 coopèrent dans la régulation des gènes mais il n'existe pas de données concernant un hétérodimère CARM1/PRMT1. Nous avons trouvé que PRMT1 et CARM1 sont surexprimées dans le cancer du poumon non à petites cellules et dans 2 lignées d'adénocarcinomes pulmonaires, A549 et H1299. Les siPRMT1 réduisent la prolifération cellulaire et facilitent la différentiation. Les siCARM1 produisent un effet similaire mais, comme ceci a déjà été décrit, suppriment l'expression de PRMT1 en plus de celle de CARM1. Ainsi, CARM1 peut-elle réduire la prolifération par un effet direct ou en inhibant PRMT1. Ce résultant souligne l'intérêt d'étudier la formation de l'hétérodimère CARM1/PRMT1. Nous avons trouvé que dans les cellules A549, CARM1 n'est pas phosphorylée sur la sérine 228, interagit avec PRMT1, méthyle les promoteurs de 2 gènes cibles (Sox2 et Nanog) et est localisée dans le noyau. Dans les cellules H1299, CARM1 est phosphorylée sur la sérine 228, n'interagit pas avec PRMT1, ne méthyle pas les promoteurs de Sox2 et Nanog et est localisée dans le cytoplasme. L'inhibition de la kinase MAP2K3 empêche la phosphorylation de CARM1 sur la sérine 228 et restaure l'interaction CARM1/PRMT1 dans les cellules H1299. En conclusion, l'invalidation de PRMT1 réduit la prolifération dans les cancers du poumon. L'invalidation de CARM1 réduit aussi la prolifération probablement par l'intermédiaire de la suppression de PRMT1. Nous suggérons que MAP2K3 est la kinase qui phosphoryle CARM1 sur la sérine 228 et que cette phosphorylation inhibe l'interaction CARM1/PRMT1. La formation de l'hétérodimère CARM1/PRMT1 pourrait constituer un moyen pour réguler l'activité de ces 2 enzymes / PRMT1 and CARM1 are 2 Protein Arginine MethylTransferases (PRMTs) implicated in cell proliferation and deregulated in cancer. Dimerisation is a conserved feature in the PRMT family. PRMT1 and CARM1 cooperate in gene regulation but CARM1/PRMT1 heterodimer is not yet characterised. We report that, PRMT1 and CARM1 are overexpressed in non-small cell lung cancer samples and in 2 lung adenocarcinoma cell lines, A549 and H1299. siPRMT1 reduce proliferation and promote differentiation. siCARM1 yield similar consequences but, as this was previously described, suppress PRMT1 expression in addition to CARM1 expression. Thus CARM1 might reduce proliferation by a direct effect or alternatively through PRMT1 suppression. This result reinforces the interest of investigating the CARM1/PRMT1 heterodimer formation. We found that in A549 cells, CARM1 is not phosphorylated at serine 228, interacts with PRMT1, methylates the promoter of 2 target genes (Sox2 and Nanog) and is localized in the nucleus. In H1299 cells, CARM1 is phosphorylated at serine 228, does not interact with PRMT1, does not methylate Sox2 and Nanog promoters and is localized in the cytoplasm. Inhibition of the kinase MAP2K3 prevents the phosphorylation of CARM1 at serine 228 and restores CARM1/PRMT1 interaction in H1299 cells. In conclusion, we propose that PRMT1 knock-down reduces proliferation in lung cancer. CARM1 knock-down reduces proliferation probably through the suppression of PRMT1. We suggest that MAP2K3 is the candidate kinase that phosphorylates CARM1 at serine 228 and that phosphorylation inhibits CARM1/PRMT1 interaction. CARM1/PRMT1 heterodimer formation might be a way of regulating the activities of these enzymes
6

Étude de la régulation de la méthylation du récepteur aux œstrogènes de type alpha dans la carcinogenèse mammaire : rôle de la protéine kinase LKB1 / Regulation of estrogen receptor alpha methylation in breast carcinogenesis : involvment of the protein kinase LKB1

Bouchekioua-Bouzaghou, Katia 05 July 2012 (has links)
Parallèlement à leur action nucléaire, les œstrogènes exercent également des effets via une signalisation cytoplasmique par des mécanismes pas complètement élucidés. Nous avons mis en évidence la méthylation de ERα (mERα) sur arginine est l’évènement clé de la signalisation non génomique des œstrogènes dans les cellules tumorales mammaires. Cette méthylation entraîne la formation d’un complexe contenant ERα/SRc/PI3K/FAK qui active des cascades de phosphorylation régulant la prolifération cellulaire. La production d’un anticorps spécifique de la forme méthylée a permis de montrer que ERα est hyperméthylé dans 55% des tumeurs mammaires. Afin de comprendre les mécanismes de régulation de la méthylation, nous avons recherché de nouveaux partenaires impliqués dans ce processus. Au cours de ma thèse, j’ai montré que la protéine kinase LKB1 est impliquée dans la signalisation non génomique des œstrogènes. Dans les cellules MCF-7, les œstrogènes entraînent rapidement le recrutement de LKB1 au sein du complexe précédemment décrit. De plus, LKB1 est indispensable à la formation de ce macro complexe ainsi qu’à la phosphorylation de Bad en aval. En effet, par cette action, LKB1 participe au rôle protecteur des œstrogènes contre l’apoptose orchestré par les œstrogènes. De plus, une étude de l’expression de mERα et LKB1, sur une série de tumeurs mammaires, a montré une corrélation significative entre l’expression de ces deux protéines associée à l’envahissement ganglionnaire. Ces résultats révèlent une signification biologique de l’interaction LKB1/mERα, suggérant un rôle oncogénique putatif de LKB1 / Besides its nuclear action, estrogens mediate also cytoplasmic signaling, however the mechanisms are not fully understood. We recently showed that arginine methylation of estrogen receptor alpha (Erα) is required for the recruitment of PI3K and Src, activating downstream kinases. An antibody that specifically recognized Erα dimethylated was generated allowing the detection of Erα hypermethylation in 55% of breast tumors. To decipher the molecular mechanisms that regulate Erα methylation in non genomic pathways, we investigated new partners of the methylated form of Erα (mERα). We identified the tumor suppressor LKB1, a Ser/Thr kinase involved in cell metabolism and cell polarity as a new partner of mERα. To ascribe a biological role to this interaction, we analyzed the protein complexes containing mErα and LKB1. LKB1 is part of the complexe involved in Erα non genomic pathway. LKB1 is essential for Erα methylation and the formation of the macrocomplex Erα/p85/Src suggesting a functional role of LKB1 in Erα methylation and then activation of downstream signaling pathways. Using a phosphospecific antibody microarray, we observed that LKB1 was required for Bad phosphorylation, suggesting its involvement in apoptosis. Indeed, we found that LKB1 participes in the protective role of estrogen against apoptosis. Interestingly, an IHC study on human breast tumors points a correlation between the expression of LKB1 and mErα : their expression is correlated with lymph node metastasis. Altogether, these results reveal biological significance of mErα/LKB1 interaction, suggesting a putative oncogenic role to LKB1
7

Étude de la régulation de la méthylation du récepteur aux œstrogènes de type alpha dans le cancer du sein / Regulation of estrogen receptor alpha methylation in breast cancer

Poulard, Coralie 27 September 2013 (has links)
Le cancer du sein représente une cause de mortalité élevée chez la femme. Le cancer du sein est un cancer hormono-dépendant. De ce fait, il est extrêmement important de définir le rôle joué par les différents acteurs protéiques de la signalisation hormonale, notamment la signalisation œstrogénique. Parallèlement aux effets nucléaires de ERa où l'hormone lie le récepteur nucléaire et régule la transcription génique, il existe une voie dite non génomique. L'équipe a montré que les œstrogènes induisent la méthylation de ERa, qui est un prérequis au recrutement de la Pl3K et de la tyrosine kinase Src, conduisant à l'activation de molécules de signalisation telles que les MAPK et Akt, induisant prolifération et survie cellulaire. Durant ma thèse, j'ai pu démontrer que le complexe mERa/Src/Pl3K existe in vivo et constitue un nouveau biomarqueur indépendant de mauvais pronostique. La recherche de nouveaux partenaires du complexe mERa/Src/Pl3K nous a permis d'identifier le suppresseur de tumeur LKB1 et l'arginine déméthylase JMJD6. De façon surprenante, l'étude de l'expression de LKB1 par immunohistochimie dans une cohorte de tumeurs mammaires a montré une dualité fonctionnelle selon sa localisation subcellulaire. De plus, nous avons démontré que JMJD6 s'associe à ERa méthylé lorsque le récepteur est complexé à Src et Pl3K, et permet ainsi la déméthylation de ERa et la dissociation du complexe mERa/Src/Pl3K. Ce travail a ainsi pu mettre en évidence que les différents acteurs de cette signalisation peuvent constituer des éléments clés au diagnostique mais également lors de la décision thérapeutique, puisque qu'il existe des drogues peuvant cibler cette voie de signalisation / Estrogen receptor a {ERa}, belonging to the superfamily of hormone nuclear receptors, regulates many physiological processes, notably the growth and survival of breast tumor cells, acting as a ligand-dependent transcription factor. Besides to the well described transcriptional effects, estrogen also mediate extranuclear events called non genomic signaling via its receptor. /n fact, team shows that ERa is methylated and that this event is a prerequisite for the recrutement of Src and P/3K and the activation of Akt which orchestrate cell proliferation and survival. During my PhD, / demonstrated that the non genomic signaling complex mERa/Src/P/3K exists in vivo and is operative. /n addition, the complex is found to be an independent prognostic factor for disease free survival. This is an emergent concept that estrogen non genomic pathway is operative in vivo and can constitute a new therapeutic targets. The search for new partners of the complex has allowed us to identify the tumor suppressor LKB1 and arginine demethylase JMJD6. Expression of LKB1 in immunohistochemistry revealed dual properties based on its subcellular localization. When LKB1 is complexed with mERa/Src/P/3K it may acquire oncogenic properties. /n addition, JMJD6 interacts with methylated ERa when the receptor is associated with Src and P/3K, and allows the demethylation of ERa and the dissociation of the complex mERa/Src/P/3K. This work showed that estrogenic non genomic players can constitute new therapeutic targets in Breast tumors
8

PRMT1, un nouveau corégulateur de la signalisation de la progestérone dans le cancer du sein / PRMT1, un nouveau corégulateur de la signalisation de la progestérone dans le cancer du sein

Malbéteau, Lucie 11 October 2019 (has links)
La progression du cancer du sein repose principalement sur la signalisation des œstrogènes et de la progestérone, et les traitements modulant l’action des œstrogènes ont amélioré la survie des patientes atteintes d’un cancer à récepteurs œstrogéniques (ERα). Des études récentes convergent sur le concept selon lequel, dans les cancers du sein ER+, PR (Progesterone Receptor) peut inhiber les fonctions favorisant la croissance induite par l'œstrogène en reprogrammant directement la liaison d'ERα sur de nouveaux gènes cibles. Les données cliniques montrent que cette signature génique est associée à un bon pronostic dans une cohorte de 1.959 patientes atteintes de cancer du sein et qu’un agoniste de la progestérone améliore l'activité antiproliférative des thérapies anti-oestrogéniques1. Ainsi, ces données démontrent qu’ER n’est pas le seul acteur de la tumorigénèse mammaire et qu'il existe une interférence fonctionnelle entre ces deux voies hormonales, soulignant le besoin d’une meilleure compréhension de la signalisation de PR. D’un point de vue mécanistique, l’activité de PR est étroitement liée à l’interaction avec les nucléosomes. En effet, PR fonctionne comme un facteur « pionnier » et se lie à la chromatine au sein de complexes protéiques, régulant son activité transcriptionnelle. Sans progestérone, PR forme un complexe répressif associé à des enzymes modificatrices de la chromatine comme LSD1, HDAC1/2 et la protéine de l'hétérochromatine HP1γ2. En réponse au traitement hormonal, ce complexe est déplacé, ce qui permet de recruter des coactivateurs et des cofacteurs associés, qui modifient la structure de la chromatine locale et entraînent l'activation ou la répression des gènes cibles de PR. Nous avons identifié un nouveau régulateur de la signalisation de la progestérone, l'arginine méthyltransférase PRMT1, enzyme souvent surexprimée dans les cancers mammaires3,4. Par diverses approches in vitro et in vivo, nous avons montré une interaction directe entre PR et PRMT1, dans le noyau des cellules tumorales mammaires, et à la fois en absence d’hormone et après 1h de stimulation à la progestérone. De plus, PRMT1 apparaît comme un nouveau membre du complexe répressif sur la chromatine, associé à PR et à ses partenaires, dans un sous-ensemble de gènes inductibles par la progestérone. Nos résultats indiquent également que l’expression de PRMT1 affecte l’activité transcriptionnelle de PR et que son inhibition perturbe l’activation rapide de la voie de la protéine kinase après une stimulation progestative. Nous montrons pour la première fois que PR est méthylé sur un résidu arginine, conservé parmi les récepteurs nucléaires (R637), localisé dans son domaine de liaison à l'ADN. La production d’un anticorps dirigé contre la forme méthylée de PR nous a permis de préciser qu’elle se localisait dans le noyau des cellules et n’était retrouvée qu’après traitement progestatif. En outre, la mutation de R637 de PR entraine une diminution de l’expression d'un sous-ensemble de cibles de PR, ce qui entraine un retard de croissance cellulaire. En conclusion, ces résultats confirment l'implication de PRMT1 et de son activité méthyltransférase dans la signalisation de PR et plus particulièrement dans son activité transcriptionnelle. Nous démontrons donc que la méthylation sur résidus d'arginine est un nouveau mécanisme de contrôle lors de la réponse à la progestérone dans les cellules tumorales mammaires / Breast cancer progression is mainly driven by estrogen and progesterone signalling and therapies modulating oestrogen‘s action have improved the survival of ER+ cancer patients. As progesterone receptor (PR) is an ER target gene, its expression in breast cancer was considered as a predictive marker of ER functionality. However, recent studies are converging on the concept that PR can directly affect ER functions in breast cancer cells1. Activated PR can redirect ER to novel chromatin binding sites associated with cell differentiation and apoptosis, leading to a potential improvement of the tumour response to anti-oestrogen therapies. In considering the differential effects of progesterone in breast cancer, it is important to define the variable might influence progesterone pathway and the downstream mediators involved in this signalling. Recently, Beato and al reported that, in breast cancer cells, the unliganded form of PR (non-activated with progesterone) bind to genomic sites and target a repressive complex containing enzyme modifying chromatin as the demethylase LSD1 or the Heterochromatin Protein 1 (HP1γ)2. Under hormonal treatment, this complex is displaced, which makes it possible to recruit coactivators and associated cofactors, which modify the structure of the local chromatin and cause the activation or repression of the target genes of PR. In addition, cellular response to progesterone is also regulated by receptor post-translational modifications that may affect its stability, its subcellular localization and its interactions with regulators. In our study, we demonstrated for the first time that PR is methylated on arginine residues, by the arginine methyltransferase PRMT1. We identified as target the arginine 637 (R637), a conserved arginine among nuclear receptor superfamily, located in the DNA-binding domain of the receptor. By in vitro and in vivo approaches, we are studying the impact of PRMT1 on PR signalling pathways. In T47D breast cancer cells, we demonstrated that PR interacts with PRMT1, mainly in the nucleus. Of interest, PRMT1 interacts with PR in the nucleus in absence of hormone stimulation and it appears as a new member of the repressive complex on a subset of progesterone inducible genes. Our results also indicate that PRMT1 expression affects PR transcriptional activity and PRMT1 knockdown disrupts the rapid activation of protein kinase pathway after progestin stimulation. The production of an antibody directed against the methylated form of PR allowed us to specify that methylated-PR is localized in the nucleus of cells and was found only after progesterone treatment. Furthermore, PRMT1 depletion and mutation of R637 resulted in an inhibition of a subset of PR-regulated genes which led to retarded cell growth.Our data reveal the impact of PRMT1 expression on PR pathways and provide evidence for the asymmetric arginine dimethylation of PR. We therefore demonstrate that methylation on arginine residues could be a novel control mechanism in the response to progesterone in mammary tumor cells
9

Loss of Id4 Promotes Stemness In Prostate Cancer Cells

Hewabostanthirige, Dhanushka 20 May 2019 (has links)
Inhibitor of differentiation 4 (ID4), a member of the helix-loop-helix family of transcriptional regulators has emerged as a tumor suppressor in prostate cancer (PCa). Recent studies have shown that Id4 is highly expressed in the normal prostate and decreases in prostate cancer due to epigenetic silencing. Id4 knockdown in androgen sensitive LNCaP cells has been shown to lead to castration resistant prostate cancer (CRPC) in vitro and in vivo. Id4-/- mice leads to underdeveloped prostate with PIN like lesions without the loss of Androgen Receptor (AR) expression. In this study we demonstrate that the loss of ID4 expression in PCa cell line LNCaP and DU145 may promote tumorigenesis by promoting stemness. LNCaP cells with stably silenced ID4 ((-)ID4) using retroviral based shRNA and LNCaP transfected with non-specific shRNA were used to perform colony forming assay and prostatosphere formation using matrigel. Expression of cancer stem cell markers was determined using western blotting and immunocytochemistry (ICC). FACS analysis was used to sort stem cells and determine the ID4 expression. Xenograft study was performed on SCID mice using CD133 positive LNCaP cells. LNCaP(-)ID4 and DU145 cells lacking ID4 showed increased holoclone as well as decreased paraclone formation, which are believed to be derived from stem cells and differentiated cells respectively, as compared to non-silencing control in the colony forming assay. There was also an increase in prostatosphere development in the LNCaP (-) ID4 cells indicating that the loss of ID4 is responsible for promoting the LNCaP cells towards cancer stem cells. The results were further validated via western blotting and ICC using known cancer stem cell markers on the holoclones and paraclones formed by these cells. Xenograft study showed that 10,000 cells from CD133 positive LNCaP cells developed tumor on SCID mice. This study reports for the first time that loss of ID4 increases holoclone and prostatosphere formation indicating that Id4 may contribute to promoting stemness in prostate cancer cells.
10

Arginine methylation by PRMT1 and PRMT5 regulates B cell activation, germinal center expansion and differentiation into plasma cells

Litzler, Ludivine 05 1900 (has links)
No description available.

Page generated in 0.4106 seconds