• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 218
  • 26
  • 12
  • 4
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 351
  • 351
  • 62
  • 46
  • 45
  • 43
  • 29
  • 28
  • 27
  • 26
  • 26
  • 26
  • 25
  • 23
  • 23
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
341

Flavonoid glucodiversification with engineered sucrose-active enzymes / Glucodiversification des flavonoïdes par ingénierie d’enzymes actives sur saccharose

Malbert, Yannick 10 July 2014 (has links)
Les flavonoïdes glycosylés sont des métabolites secondaires d’origine végétale, qui présentent de nombreuses propriétés physico-chimiques et biologiques intéressantes pour des applications industrielles. La glycosylation accroît généralement la solubilité de ces flavonoïdes mais leurs faibles niveaux de production dans les plantes limitent leur disponibilité. Ces travaux de thèse portent donc sur le développement de nouvelles voies de gluco-diversification des flavonoïdes naturels, en mettant à profit l’ingénierie des protéines. Deux transglucosylases recombinantes, structurellement et biochimiquement caractérisées, l'amylosaccharase de Neisseria polysaccharea et la glucane-saccharase de branchement α-(1→2), forme tronquée de la dextran-saccharase de L. Mesenteroides NRRL B-1299, ont été sélectionnées pour la biosynthèse de nouveaux flavonoïdes, possédant des motifs originaux d’α-glycosylation, et potentiellement une solubilité accrue dans l'eau. Dans un premier temps, une librairie de petite taille de mutants de l’amylosaccharase, ciblée sur le site de liaison à l’accepteur, à été criblée en présence de saccharose (donneur d’unité glycosyl) et de lutéoline comme accepteur. Une méthode de screening a donc été développée, et a permis d’isoler des mutants améliorés pour la synthèse de nouveaux glucosides de lutéoline, jusqu’à 17000 fois plus soluble dans l’eau que la lutéoline aglycon. Afin de glucosyler d’autres flavonoïdes, la glucane-saccharase de branchement α-(1→2), a été préférentiellement sélectionnée. Des plans expérimentaux alliés à une méthodologie en surface de réponse ont été réalisés pour optimiser la production de l’enzyme sous forme soluble et éviter la formation de corps d’inclusion. Cinq paramètres ont été ainsi analysés : le temps de culture, la température, et les concentrations en glycérol, lactose (inducteur) et glucose (répresseur). En appliquant les conditions optimales prédites, 5740 U.L-1 de culture d’enzyme soluble ont été produites en microplaques, alors qu’aucune activité n’était retrouvée dans la fraction soluble, lors de l’utilisation de la méthode de production précédemment utilisée. Finalement, Une approche de modélisation moléculaire, structurellement guidés par l’arrimage de flavonoïdes monoglucosylés dans le site actif de l’enzyme, a permis d’identifier des cibles de mutagenèse et de générer des libraries de quelques milliers de variants. Une méthode rapide de criblage sur milieu solide, basée sur la visualisation colorimétrique d’un changement de pH, a été mise au point. Les mutants encore actifs sur saccharose ont été sélectionnés puis analysés sur leur capacités à glucosyler la quercétine et la diosmétine. Une petite série de 23 mutants a ainsi été retenue comme plate-forme d’enzymes améliorées dédiées à la glucosylation de flavonoïdes et a été évalués pour la glycosylation de six flavonoïdes distincts. La promiscuité, remarquablement générée dans cette plateforme, à permis d’isoler quelques mutants beaucoup plus efficaces que l’enzyme sauvage, produisant des motifs de glucosylation différents et fournissant des informations intéressante pour le design et l’amélioration des outils enzymatiques de glucosylation des flavonoïdes. / Flavonoid glycosides are natural plant secondary metabolites exhibiting many physicochemical and biological properties. Glycosylation usually improves flavonoid solubility but access to flavonoid glycosides is limited by their low production levels in plants. In this thesis work, the focus was placed on the development of new glucodiversification routes of natural flavonoids by taking advantage of protein engineering. Two biochemically and structurally characterized recombinant transglucosylases, the amylosucrase from Neisseria polysaccharea and the α-(1→2) branching sucrase, a truncated form of the dextransucrase from L. Mesenteroides NRRL B-1299, were selected to attempt glucosylation of different flavonoids, synthesize new α-glucoside derivatives with original patterns of glucosylation and hopefully improved their water-solubility. First, a small-size library of amylosucrase variants showing mutations in their acceptor binding site was screened in the presence of sucrose (glucosyl donor) and luteolin acceptor. A screening procedure was developed. It allowed isolating several mutants improved for luteolin glucosylation and synthesizing of novel luteolin glucosides, which exhibited up to a 17,000-fold increase of solubility in water. To attempt glucosylation of other types of flavonoids, the α-(1→2) branching sucrase, naturally designed for acceptor reaction, was preferred. Experimental design and Response Surface Methodology were first used to optimize the production of soluble enzyme and avoid inclusion body formation. Five parameters were included in the design: culture duration, temperature and concentrations of glycerol, lactose inducer and glucose repressor. Using the predicted optimal conditions, 5740 U. L-1of culture of soluble enzyme were obtained in microtiter plates, while no activity was obtained in the soluble fraction when using the previously reported method of production. A structurally-guided approach, based on flavonoids monoglucosides docking in the enzyme active site, was then applied to identify mutagenesis targets and generate libraries of several thousand variants. They were screened using a rapid pH-based screening assay, implemented for this purpose. This allowed sorting out mutants still active on sucrose that were subsequently assayed for both quercetin and diosmetin glucosylation. A small set of 23 variants, constituting a platform of enzymes improved for the glucosylation of these two flavonoids was retained and evaluated for the glucosylation of a six distinct flavonoids. Remarkably, the promiscuity generated in this platform allowed isolating several variants much more efficient than the wild-type enzyme. They produced different glucosylation patterns, and provided valuable information to further design and improve flavonoid glucosylation enzymatic tools.
342

Mutational Analysis and Redesign of Alpha-class Glutathione Transferases for Enhanced Azathioprine Activity

Modén, Olof January 2013 (has links)
Glutathione transferase (GST) A2-2 is the human enzyme most efficient in catalyzing azathioprine activation. Structure-function relationships were sought explaining the higher catalytic efficiency compared to other alpha class GSTs. By screening a DNA shuffling library, five recombined segments were identified that were conserved among the most active mutants. Mutational analysis confirmed the importance of these short segments as their insertion into low-active GSTs introduced higher azathioprine activity. Besides, H-site mutagenesis led to decreased azathioprine activity when the targeted positions belonged to these conserved segments and mainly enhanced activity when other positions were targeted. Hydrophobic residues were preferred in positions 208 and 213. The prodrug azathioprine is today primarily used for maintaining remission in inflammatory bowel disease. Therapy leads to adverse effects for 30 % of the patients and genotyping of the metabolic genes involved can explain some of these incidences. Five genotypes of human A2-2 were characterized and variant A2*E had 3–4-fold higher catalytic efficiency with azathioprine, due to a proline mutated close to the H-site. Faster activation might lead to different metabolite distributions and possibly more adverse effects. Genotyping of GSTs is recommended for further studies. Molecular docking of azathioprine into a modeled structure of A2*E suggested three positions for mutagenesis. The most active mutants had small or polar residues in the mutated positions. Mutant L107G/L108D/F222H displayed a 70-fold improved catalytic efficiency with azathioprine. Determination of its structure by X-ray crystallography showed a widened H-site, suggesting that the transition state could be accommodated in a mode better suited for catalysis. The mutational analysis increased our understanding of the azathioprine activation in alpha class GSTs and highlighted A2*E as one factor possibly behind the adverse drug-effects. A successfully redesigned GST, with 200-fold enhanced catalytic efficiency towards azathioprine compared to the starting point A2*C, might find use in targeted enzyme-prodrug therapies.
343

Vérification de la corrélation entre la fonction, la structure et la dynamique sur un chemin évolutif recombinant les β-lactamases TEM-1 et PSE-4

Gobeil, Sophie 09 1900 (has links)
No description available.
344

Expressão de tireotrofina humana em células de embrião de rim humano (HEK293) / Human tryrotropin expression in human embrionic kidney cells (HEK293)

SANTANA, PATRICIA M. 22 December 2016 (has links)
Submitted by Marco Antonio Oliveira da Silva (maosilva@ipen.br) on 2016-12-22T16:39:39Z No. of bitstreams: 0 / Made available in DSpace on 2016-12-22T16:39:39Z (GMT). No. of bitstreams: 0 / Neste trabalho foi transfectada uma linhagem de células embrionárias de rim humano (HEK293) com os genes das subunidades α e β da tireotrofina humana (hTSH), hormônio glicoproteico secretado pela hipófise. Após 5 dias de cultivo obteve-se uma concentração de hTSH no meio condicionado de 0,95μg/mL. O material foi concentrado e purificado utilizando uma estratégia envolvendo duas etapas, uma cromatografia de troca catiônica e uma cromatografia líquida de alta eficiência (HPLC) de fase reversa, que permitiu uma recuperação de 55% e uma pureza >90%. O produto purificado (hTSH-HEK) foi analisado e comparado a uma preparação comercial obtida em células CHO (hTSH-CHO) e a uma preparação hipofisária (hTSH-Pit). A identidade e a pureza do hTSH-HEK foram avaliadas por métodos físicoquímicos e imunológico (espectrometria de massa MALDI-TOF, HPLC de exclusão molecular e de fase reversa, SDS-PAGE e ensaio imunoradiométrico). A porção glicídica do hTSH-HEK foi avaliada pela análise do perfil dos N-glicanos e o comportamento biológico deste hormônio foi avaliado por bioensaio in vivo e estudo farmacocinético. As 3 preparações apresentaram pureza equivalente (97%) e a massa molecular relativa do hTSH-HEK foi 2,1% menor do que a do hTSH-CHO e 2,7% maior do que a do hTSH-Pit. A maior hidrofobicidade relativa, avaliada por RP-HPLC, foi a do hTSH-HEK. Os N-glicanos identificados no hTSH-HEK foram do tipo complexo, apresentando predominantemente estruturas tri-antenárias, enquanto no hTSH-CHO e no hTSH-Pit as estruturas bi-antenárias foram predominantes. Foram detectadas diferenças significativas relacionadas à composição dos carboidratos para estas preparações, um teor muito menor de ácido siálico e muito maior de fucose foram observados no hTSHHEK. Foi confirmada a atividade biológica das 3 preparações, sendo a bioatividade do hTSHHEK 39% e 16% inferior à do hTSH-CHO e hTSH-Pit, respectivamente. A meia-vida circulatória do hTSH-HEK foi menor (1,5 X) que a do hTSH-CHO e a do hTSH-Pit (1,2 X). De acordo com esses resultados o hTSH-HEK pode ser considerado uma alternativa viável para aplicações clínicas especialmente por sua origem humana e composição de carboidratos. / Dissertação (Mestrado em Tecnologia Nuclear) / IPEN/D / Instituto de Pesquisas Energéticas e Nucleares - IPEN-CNEN/SP
345

Protein Engineering of HIV-1 Env and Human CD4

Saha, Piyali January 2013 (has links) (PDF)
Since, its discovery over three decades ago, HIV has wrecked havoc worldwide. According to the UNAIDS report 2011, at present 34 million people is living with HIV and AIDS vaccine with broadly neutralizing activity still remains elusive. The envelope glycoproteins on the virion surface, is the most accessible component to the host immune system and therefore is targeted for vaccine design. However, the virus has employed various strategies to avoid the host immune response. The extremely high rate of mutations, extensive glycosylation of the envelope glycoprotein, conformational flexibility of the envelope, has made all the efforts aimed to design a broadly neutralizing immunogen futile. In Chapter1, we briefly discuss about the structural and genomic organization of the HIV-1 along with various strategies the virus has employed to evade the immune system. We also present the progress and failures encountered in the past three decades, on the way to design protective HIV vaccine and inhibitors. On the host cell surface, HIV-1 glycoprotein gp120 binds to the cell surface receptor CD4 and leads to the fusion of viral and host cellular membranes. CD4 is present on the surface of T-lymphocytes. It consists of a cytoplasmic tail, one transmembrane region, and four extracellular domains, D1−D4. sCD4 has been used as an entry inhibitor against HIV-1. However, this molecule could not neutralize primary isolates of the virus. Previously, from our lab, we had reported the design and characterization of a construct consisting of the first two domains of CD4 (CD4D12), that binds gp120 with similar affinity as soluble 4-domain CD4 (sCD4). However, the first domain alone (CD4D1) was previously shown to be largely unfolded and had 3-fold weaker affinity for gp120 when compared to sCD4 [Sharma, D.; et al. (2005) Biochemistry 44, 16192−16202]. In Chapter 2, we describe the design and characterization of three single-site mutants of CD4D12 (G6A, L51I, and V86L) and one multisite mutant of CD4D1 (G6A/L51I/L5K/F98T). G6A, L51I, and V86L are cavity-filling mutations while L5K and F98T are surface mutations which were introduced to minimize the aggregation of CD4D1 upon removal of the second domain. All the mutations in CD4D12 increased the stability and yield of the protein relative to the wild-type protein. The mutant CD4D1 (CD4D1a) with the 4 mutations was folded and more stable compared to the original CD4D1, but both bound gp120 with comparable affinity. In in vitro neutralization assays, both CD4D1a and G6A-CD4D12 were able to neutralize diverse HIV-1 viruses with similar IC50s as 4-domain CD4. These stabilized derivatives of human CD4 are useful starting points for the design of other more complex viral entry inhibitors. Most HIV-1 broadly neutralizing antibodies are directed against the gp120 subunit of the env surface protein. Native env consists of a trimer of gp120−gp41 heterodimers, and in contrast to monomeric gp120, preferentially binds CD4 binding site (CD4bs)-directed neutralizing antibodies over non-neutralizing ones. One group of cryo-electron tomography studies have suggested that the V1V2 loop regions of gp120 are located close to the trimer interface and the other group claimed that the V1V2 loop region is far from the apex of the trimer. To further investigate the position of the V1V2 region, in the native envelope trimer, in Chapter 3, we describe the design and characterization of cyclically permuted variants of gp120 with and without the h-CMP and SUMO2a trimerization domains inserted into the V1V2 loop. h-CMP-V1cyc is one such variant in which residues 153 and 142 are the N- and C-terminal residues, respectively, of cyclically permuted gp120 and h-CMP is fused to the N-terminus. This molecule forms a trimer under native conditions and binds CD4 and the neutralizing CD4bs antibodies b12 with significantly higher affinity than wild-type gp120. It binds non-neutralizing CD4bs antibody F105 with lower affinity than gp120. A similar derivative, h-CMP-V1cyc1, bound the V1V2 loop-directed broadly neutralizing antibodies PG9 and PG16 with ~15-fold higher affinity than wild-type JRCSF gp120. These cyclic permutants of gp120 are properly folded and are potential immunogens. The data also support env models in which the V1V2 loops are proximal to the trimer interface. HIV-1 envelope (env) protein gp120 has approximately 25 glycosylation sites of which ~4 are located in the inner domain, ~7-8 in the V1/V2 and V3 variable loops and the rest in the outer domain (OD) of gp120. These glycans shield env from recognition by the host immune system and are believed to be indispensable for proper folding of gp120 and viral infectivity. However, there is no detailed study that describes whether a particular potential n-linked glycan is indispensable for folding of gp120.Therefore, in Chapter 4, using rationally designed mutations and yeast surface display (YSD), we show that glycosylation is not essential for the correct in vivo folding of OD alone or OD in the context of core gp120. Following randomization of the remaining four glycosylation sites, we isolated a core gp120 mutant, which contained a single inner domain glycan and retained yeast surface expression and broadly neutralizing antibody (bNAb) binding. Thus demonstrates that most gp120 glycans are dispensable for folding in the absence of gp41. However in the context of gp160, we show that all core gp120 glycans are dispensable for folding, recognition of bNAbs and for viral infectivity. We also show that deglycosylated molecules can serve as a starting point to re-introduce epitopes for specific glycan dependent bNAbs. Several of these constructs will also be useful for epitope mapping and env structural characterization. Glycosylation of env is known to inhibit binding to germline precursors of known bNAbs. Hence the present results inform immunogen design, clarify the role of glycosylation in gp120 folding and illustrate general methodology for design of glycan free, folded protein derivatives. On the virion surface env glycoproteins gp120 and gp41 interact via non-covalent interactions and form trimers of heterodimers. Upon binding cell surface receptor CD4 and co-receptor CCR5/CXCR4, gp120 and gp41 undergo a lot of conformational changes, which ultimately lead to the fusion of viral and cellular membranes by formation of six-helix bundle in gp41. High resolution structural information is available for core gp120 and post-fusion six-helix bundle conformation of gp41. However, the structural information about the native gp120:gp41 interface in the native trimer is lacking. In Chapter 5, we describe the design and characterization of various single chain derivatives of gp120 inner doamin and gp41. Among the designed constructs, gp41-id2b is folded but is a mixture of dimer and monomer under native conditions. To facilitate, trimer formation, two trimerization domains (h-CMP and Foldon) were individually fused to the N-terminus of gp41-id2b to generate h-CMP-gp41-id2b and Foldon-gp41-id2b. Although, these molecules were proteolytically more stable than gp41-id2b, they did not form trimer under native conditions. All the single chain derivatives were designed based on the crystal structure of gp120, which was devoid of C1 and C5 domains (PDBID 1G9M). A new set of constructs to mimic the native gp120:gp41 interface will be designed and characterized based on the recently solved crystal structure of gp120 with the C1 and C5 domains (PDBID 3JWD and 3JWO). Helix-helix interactions are fundamental to many biological signals and systems, found in homo- or hetero-multimerization of signaling molecules as well as in the process of virus entry into the host. In HIV, virus-host membrane fusion during infection is mediated by the formation of six helix bundle (6HB) from homotrimers of gp41, from which a number of synthetic peptides have been derived as antagonists of virus entry. Yeast surface two-hybrid (YS2H) system is a platform, which is designed to detect protein-protein interactions occurring through a secretory pathway. In Chapter 6, we describe the use of aYS2H system, to reconstitute 6HB complex on the yeast surface and delineate the residues influencing homo-oligomeric and hetero-oligomeric coiled-coil interactions. Hence, we present YS2H as a platform for facile characterization of hetero-oligomeric interactions and design of antagonistic peptides for inhibition of HIV and many other enveloped viruses relying on membrane fusion for infection, as well as cellular signaling events triggered by hetero-oligomeric coiled coils. However, using this YS2H platform, the native hetero-oligomeric complex of gp120 and gp41 could not be captured. In Appendix 1, we report cloning, expression and purification of PΔGgp120 and ΔGgp120 from methylotrophic yeast Pichia pastoris. PΔGgp120 was purified as a secreted protein. However, in electrophoretic analyses the molecule ran as a heterogeneous smear. Further optimization of the purification protocol and biophysical characterizations of this molecule will be performed in future. In Appendix 2, gp41 variants were expressed on the yeast cell surface as a C-terminally fused protein and its interaction with externally added gp120 was monitored by FACS. The surface expression of the gp41 constructs was poor and they did not show any interaction with gp120.
346

Protein Engineering and Stabilization of HIV-1 Envelope Glycoprotein

Kesavardana, Sannula January 2014 (has links) (PDF)
A number of viral diseases such as Hepatitis B, small pox, measles, rubella and polio have effective vaccines to control or eradicate them. HIV-1 is a lentivirus which infects human immune cells and leads to the disease called AIDS (Acquired Immuno Deficiency Syndrome). Despite much effort since the three decades of its discovery, there is no effective vaccine against HIV-1. The envelope glycoprotein of HIV-1 is the most accessible protein on the virion surface and is essential for HIV-1 infection. Thus, this protein is the primary target for HIV-1 vaccine design. However, HIV-1 has acquired numerous immune evasive mechanisms to escape from the human immune system. Various factors such as high variability of the envelope sequence, presence of immune dominant variable loop regions, extensive glycosylation which masks conserved epitopes on the envelope, weak non-covalent interactions between gp120 and gp41 subunits of the envelope and the metastable nature of the envelope hinder the development of an effective vaccine against HIV-1. Various approaches have been carried out to design immunogens based on the envelope glycoprotein but so far none of these have succeeded in elicitation of a broad neutralizing antibody response. In chapter 1, brief descriptions of the HIV-1 epidemic, structural and genomic organization of HIV-1 along with the difficulties faced and progress in the development of an HIV-1 vaccine are described. HIV-1 envelope glycoprotein (Env) is a trimer of gp120-gp41 heterodimers. The gp41 subunit in the native, pre-fusion trimeric Env exists in a metastable conformation and attains a stable post-fusion six helix bundle (6HB) conformation comprised of a trimer of N-heptad repeat (NHR) and C-heptad repeat (CHR) heterodimers, that drives fusion of viral and cellular membranes. The metastable nature of gp41 drives the equilibrium towards the post-fusion conformation which favours shedding of gp120 and formation of the gp41 six helix bundle remnants from the Env trimer. These dissociated products display non-neutralizing epitopes to the immune system to drive non-neutralizing antibody responses. Design and purification of Env glycoprotein in its native trimeric form is challenging due to the instability of the functional HIV-1 native Env trimer. In chapter 2, we describe our attempts to stabilize native Env trimers by incorporation of mutations at the NHR:CHR interface that disrupt the post-fusion 6HB of gp41. The mutations V570D and I573D stabilize native JRFL Env and occlude non-neutralizing epitopes to a greater extent than the previously identified I559P mutation that it is at the interface of the NHR trimers in the 6HB. The mutations prevent sCD4 induced gp120 shedding and 6HB formation. The data suggest that positions 570 and 573 are surface proximal in the native Env. Aspartic acid substitutions at these positions stabilize native trimers through destabilization of the post fusion 6HB conformation. These mutations should enhance the exposure of native Env forms to the immune system and therefore can be used to stabilize Env in a DNA vaccine format. In previous studies, a disulfide bond was engineered between gp120 and gp41 of Env to stabilize the interactions between them (SOS gp140). An I559P mutation was also introduced to stabilize the native gp41 conformation in the context of disulfide engineered Env (SOSIP gp140). The purified, soluble SOSIP gp140 immunogens were trimeric and cleaved properly. However, these immunogens failed to elicit broad neutralizing responses. The SOSIP gp140 immunogens appear to be good conformational mimics of the native trimeric Env. Thus, it is important to understand the details of the conformation and antigenic nature of SOSIP Env to further assist the design of Env immunogens in a native-like conformation. In chapter 3, we expressed JRFL-SOSIP Env on the cell surface and probed with various gp120 and gp41 specific antibodies to investigate whether this Env protein mimics the native like Env conformation. We show that introduction of a disulfide bond between gp120 and gp41 perturbs the native Env conformation, though this effect is partially alleviated by furin expression. The introduction of the V570D mutation instead of the I559P mutation partially restored the native like conformation of disulfide engineered Env. Proper cleavage of the Env to gp120 and gp41 is essential for the formation of native Env conformation. Uncleaved Env attains non-native forms and binds to non-neutralizing antibodies. To overcome inefficient cleavage problems, we co-expressed gp120 and gp41 genes on separate plasmids in mammalian cells and monitored the formation of native like Env complexes on the cell surface. We observed a fraction of native-like Env complexes on the cell surface when gp120 and gp41 with the V570D mutation are co¬expressed. We also describe the expression of Env with a self-cleavable 2A peptide between gp120 and gp41-V570D. We conclude that co-expression of gp120 and gp41 to form native like Env complexes is possible. HIV-1 Env trimeric immunogens are believed to be better immunogens than monomeric gp120. The trimeric Env immunogens designed so far, elicited marginally better neutralizing antibody response than monomeric gp120. However, these immunogens failed to elicit antibodies which could neutralize multiple primary HIV-1 isolates. Thus, it is possible that these immunogens have failed to mimic the native Env conformation. Cryo-EM and crystal structures of Env suggested that three gp120 monomers are held together at the apex of the Env trimer and the V1V2 regions of each gp120 monomer contribute to this trimeric interface. It was also shown that two broadly neutralizing antibodies (PG9 and PG16) bind to quaternary epitopes formed by V1V2 regions. Based on these observations, we hypothesized that insertion of heterologous trimerization domains into V1V2 loops might help in the formation of native like gp120 trimers. In chapter 4, two different trimerization domains (6-helix bundle and foldon trimerization domains) were inserted at the V1 loop of gp120 and C1 and C5 regions of gp120 were deleted to reduce the conformational flexibility of gp120. The resulting constructs were not trimeric and lost binding to trimer specific antibodies, PG9 and PG16. Due to their large distances between N and C-termini, these trimerization domains might have altered the local conformation of V1V2 regions and destabilized gp120 trimer formation. Interestingly, introduction of a trimerization domain (hCMP) at the C-terminus of C1 and C5 deleted gp120 (gp120-hCMP-21), led to the formation of native-like trimers which bound to both PG9 and PG16 antibodies. These results suggest that it may be difficult to trimerize gp120 by insertion of heterologous trimerization domains into the V1V2 loop and that conformational integrity of the V1V2 region is essential for the formation of trimeric gp120 interface. V1V2 regions of gp120 form quaternary epitopes on the Env trimer and are target for several broadly neutralizing antibodies. Moreover, these regions are important for the formation of the gp120 trimeric interface in the Env. In chapter 4, we show that insertion of heterologous trimerization domains at the V1 loop failed to form native like gp120 trimers. To further investigate this issue, in chapter 5, we made cyclic permutants of the gp120 molecule to create new N and C-termini at the V1 or V2 loop regions. This allowed the insertion of heterologous trimerization domains at these loop regions without affecting the folding and stability of gp120. The hCMP trimerization domain was introduced at the N-terminus of cyclically permuted gp120 (V1cyc and V2cyc). The resulting cyclic permutants were trimeric and retained binding to several broadly neutralizing antibodies. These cyclic permutants showed 10-20 fold increased binding to quaternary epitope specific neutralizing antibodies PG9 and PGT 145. CD4 binding site directed broadly neutralizing antibodies b12 and VRC01 also showed increased affinities to these cyclic permutants. Immunization of guinea pigs with cyclic permutants elicited broad neutralizing antibody response to Tier-1 and Tier-2 HIV-1 isolates with substantially higher titers than the corresponding monomeric gp120 immunogens. The data demonstrate that cyclic permutation of gp120 did not affect the structural and functional properties of gp120. It is possible to elicit broadly neutralizing sera against HIV-1 using cyclically permuted gp120 trimers in small animals. Among several proposed cryo-EM tomography structures of trimeric Env, some suggested that the V1V2 loop regions of gp120 are located close to the trimer interface while some other structures suggested that the V1V2 loop regions of gp120 are located far from the trimer axis. The present study supports Env models in which the V1V2 loops are proximal to the trimer interface. This has recently been confirmed in high resolution cryo-EM and crystal structures of HIV-1 gp140 derivatives. HIV-1 Env subunit gp120 has 50% of its molecular mass comprised of glycans which shield Env from immune recognition. Env has approximately 25 glycosylation sites of which ~4 are located in the inner domain, ~7-8 in the V1/V2 and V3 loops and the rest in the outer domain (OD). Earlier reports suggested that the glycans are indispensable for proper folding of Env and a certain level of glycan coverage is essential for maintaining infectivity of the virion. In chapter 6, we investigated the effect of removal of glycans from core gp120 on the infectivity of the HIV-1 and on the recognition of Env by various broadly neutralizing antibodies (bNAbs). We mutated the glycosylation sites in core gp120 to the second most frequent amino acids based on multiple sequence alignment. Pseudoviral infectivity assays and mammalian cell surface display experiments show that in the context of gp160, all core gp120 glycans are dispensable for viral infectivity and for recognition of bNAbs. We also show that deglycosylated molecules can serve as a starting point to re-introduce epitopes for specific glycan dependent bNAbs. Several of the constructs will also be useful for epitope mapping and Env structural characterization. Glycosylation of Env is known to inhibit binding to germline precursors of known bNAbs. In this study we show that recognition of VRC01 germline-bNAb increases substantially with the progressive loss of glycans from JRFL pseudoviruses. This work has so far resulted in the following publications (mentioned in next page).
347

Shifting the boundaries of experimental studies in engineering enzymatic functions : combining the benefits of computational and experimental methods

Ebert, Maximilian 12 1900 (has links)
Cette thèse comporte quatre fichiers vidéo. This thesis comes with four video files. / L'industrie chimique mondiale est en pleine mutation, cherchant des solutions pour rendre la synthèse organique classique plus durable. Une telle solution consiste à passer de la catalyse chimique classique à la biocatalyse. Bien que les avantages des enzymes incluent leur stéréo, régio et chimiosélectivité, cette sélectivité réduit souvent leur promiscuité. Les efforts requis pour adapter la fonction enzymatique aux réactions désirées se sont révélés d'une efficacité modérée, de sorte que des méthodes rapides et rentables sont nécessaires pour générer des biocatalyseurs qui rendront la production chimique plus efficace. Dans l’ère de la bioinformatique et des outils de calcul pour soutenir l'ingénierie des enzymes, le développement rapide de nouvelles fonctions enzymatiques devient une réalité. Cette thèse commence par un examen des développements récents sur les outils de calcul pour l’ingénierie des enzymes. Ceci est suivi par un exemple de l’ingénierie des enzymes purement expérimental ainsi que de l’évolution des protéines. Nous avons exploré l’espace mutationnel d'une enzyme primitive, la dihydrofolate réductase R67 (DHFR R67), en utilisant l’ingénierie semi-rationnelle des protéines. La conception rationnelle d’une librarie de mutants, ou «Smart library design», impliquait l’association covalente de monomères de l’homotétramère DHFR R67 en dimères afin d’augmenter la diversité de la librairie d’enzymes mutées. Le criblage par activité enzymatique a révélé un fort biais pour le maintien de la séquence native dans un des protomères tout en tolérant une variation de séquence élevée pour le deuxième. Il est plausible que les protomères natifs procurent l’activité observée, de sorte que nos efforts pour modifier le site actif de la DHFR R67 peuvent n’avoir été que modérément fructueux. Les limites des méthodes expérimentales sont ensuite abordées par le développement d’outils qui facilitent la prédiction des points chauds mutationnels, c’est-à-dire les sites privilégiés à muter afin de moduler la fonction. Le développement de ces techniques est intensif en termes de calcul, car les protéines sont de grandes molécules complexes dans un environnement à base d’eau, l’un des solvants les plus difficiles à modéliser. Nous présentons l’identification rapide des points chauds mutationnels spécifiques au substrat en utilisant l'exemple d’une enzyme cytochrome P450 industriellement pertinente, la CYP102A1. En appliquant la technique de simulation de la dynamique moléculaire par la force de polarisation adaptative, ou «ABF», nous confirmons les points chauds mutationnels connus pour l’hydroxylation des acides gras tout en identifiant de nouveaux points chauds mutationnels. Nous prédisons également la conformation du substrat naturel, l’acide palmitique, dans le site actif et nous appliquons ces connaissances pour effectuer un criblage virtuel d'autres substrats de cette enzyme. Nous effectuons ensuite des simulations de dynamique moléculaire pour traiter l’impact potentiel de la dynamique des protéines sur la catalyse enzymatique, qui est le sujet de discussions animées entre les experts du domaine. Avec la disponibilité accrue de structures cristallines dans la banque de données de protéines (PDB), il devient clair qu’une seule structure de protéine n’est pas suffisante pour élucider la fonction enzymatique. Nous le démontrons en analysant quatre structures cristallines que nous avons obtenues d’une enzyme β-lactamase, parmi lesquelles un réarrangement important des résidus clés du site actif est observable. Nous avons réalisé de longues simulations de dynamique moléculaire pour générer un ensemble de structures suggérant que les structures cristallines ne reflètent pas nécessairement la conformation de plus basse énergie. Enfin, nous étudions la nécessité de compléter de manière informatisée un hémisphère où l’expérimental n’est actuellement pas possible, à savoir la prédiction de la migration des gaz dans les enzymes. À titre d'exemple, la réactivité des enzymes cytochrome P450 dépend de la disponibilité des molécules d’oxygène envers l’hème du site actif. Par le biais de simulations de la dynamique moléculaire de type Simulation Implicite du Ligand (ILS), nous dérivons le paysage de l’énergie libre de petites molécules neutres de gaz pour cartographier les canaux potentiels empruntés par les gaz dans les cytochromes P450 : CYP102A1 et CYP102A5. La comparaison pour les gaz CO, N2 et O2 suggère que ces enzymes évoluent vers l’exclusion du CO inhibiteur. De plus, nous prédisons que les canaux empruntés par les gaz sont distincts des canaux empruntés par le substrat connu et que ces canaux peuvent donc être modifiés indépendamment les uns des autres. / The chemical industry worldwide is at a turning point, seeking solutions to make classical organic synthesis more sustainable. One such solution is to shift from classical catalysis to biocatalysis. Although the advantages of enzymes include their stereo-, regio-, and chemoselectivity, their selectivity often reduces versatility. Past efforts to tailor enzymatic function towards desired reactions have met with moderate effectiveness, such that fast and cost-effective methods are in demand to generate biocatalysts that will render the production of fine and bulk chemical production more benign. In the wake of bioinformatics and computational tools to support enzyme engineering, the fast development of new enzyme functions is becoming a reality. This thesis begins with a review of recent developments on computational tools for enzyme engineering. This is followed by an example of purely experimental enzyme engineering and protein evolution. We explored the mutational space of a primitive enzyme, the R67 dihydrofolate reductase (DHFR), using semi-rational protein engineering. ‘Smart library design’ involved fusing monomers of the homotetrameric R67 DHFR into dimers, to increase the diversity in the resulting mutated enzyme libraries. Activity-based screening revealed a strong bias for maintenance of the native sequence in one protomer with tolerance for high sequence variation in the second. It is plausible that the native protomers procure the observed activity, such that our efforts to modify the enzyme active site may have been only moderately fruitful. The limitations of experimental methods are then addressed by developing tools that facilitate computational mutational hotspot prediction. Developing these techniques is computationally intensive, as proteins are large molecular objects and work in aqueous media, one of the most complex solvents to model. We present the rapid, substrate-specific identification of mutational hotspots using the example of the industrially relevant P450 cytochrome CYP102A1. Applying the adaptive biasing force (ABF) molecular dynamics simulation technique, we confirm the known mutational hotspots for fatty acid hydroxylation and identify a new one. We also predict a catalytic binding pose for the natural substrate, palmitic acid, and apply that knowledge to perform virtual screening for further substrates for this enzyme. We then perform molecular dynamics simulations to address the potential impact of protein dynamics on enzyme catalysis, which is the topic of heated discussions among experts in the field. With the availability of more crystal structures in the Protein Data Bank, it is becoming clear that a single protein structure is not sufficient to elucidate enzyme function. We demonstrate this by analyzing four crystal structures we obtained of a β-lactamase enzyme, among which a striking rearrangement of key active site residues was observed. We performed long molecular dynamics simulations to generate a structural ensemble that suggests that crystal structures do not necessarily reflect the conformation of lowest energy. Finally, we address the need to computationally complement an area where experimentation is not currently possible, namely the prediction of gas migration into enzymes. As an example, the reactivity of P450 cytochrome enzymes depends on the availability of molecular oxygen at the active-site heme. Using the Implicit Ligand Sampling (ILS) molecular dynamics simulation technique, we derive the free energy landscape of small neutral gas molecules to map potential gas channels in cytochrome P450 CYP102A1 and CYP102A5. Comparison of CO, N2 and O2 suggests that those enzymes evolved towards exclusion of the inhibiting CO. In addition, we predict that gas channels are distinct from known substrate channels and therefore can be engineered independently from one another.
348

INVESTIGATION OF DIFFERENTIALLY EXPRESSED NONCODING RNAS IN PANCREATIC DUCTAL ADENOCARCINOMA

Sutaria, Dhruvitkumar S January 2016 (has links)
No description available.
349

Generation of a new ADAPT library for stability improvement / Generering av ett nytt ADAPT-bibliotek för stabilitetsförbättring

Salphale, Sumant Yogesh January 2023 (has links)
Under senare år har målinriktad terapi varit ett växande område inom cancerterapi som en mer målinriktad behandling än kemoterapi. Dessa behandlingar baseras främst på antikroppsbaserade läkemedel som är ganska stora och komplexa, vilket ökar den totala kostnaden för behandlingen. Därför måste man hitta en alternativ metod för både upptäckt och behandling för att hjälpa patienterna. Små affinitetsdomäner har skapats med målet att förbättra vävnadspenetrationen och samtidigt upprätthålla en hög grad av målspecificitet, vilket leder till färre biverkningar. Ett av exemplen på detta är Albumin Binding Domain-Derived Affinity Protein (ADAPT). Det har baserats på en av de albuminbindande domänerna (ABD) i streptokockproteinet G, med en storlek på 6,5 kDa. Nyligen modifierades ADAPT ytterligare för att samtidigt binda albumin och ett annat relevant målprotein av intresse, vilket tyder på en längre halveringstid i patientserum och möjliggör utveckling av nyare och terapeutiska läkemedel. I detta projekt presenteras den fjärde generationen av ADAPT-biblioteket som utformats för att ha förbättrad stabilitet. Selektioner med fagdisplay utfördes mot tre målproteiner: carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5), en biomarkör för kolorektalcancer, epithelial cell adhesion molecule (EpCAM), en markör för flera gastrointestinala karcinom och trophoblast cell-surface antigen 2 (Trop2) som är överuttryckt i trippel-negativ bröstcancer. Resultaten visar bindning till CEACAM5, EpCAM och Trop2, vilket har visats med monoklonal fag-ELISA. Bindningsaffiniteten, sekundärstrukturen hos de utvalda bindarna och den bispecifika bindningen till serumalbumin återstår att utvärdera ytterligare. Projektet visar således att de ADAPTs som valts ut mot målen CEACAM5, EpCAM och Trop2 har en enorm potential för framtida kliniska tillämpningar som syftar till utveckling av diagnostik och terapi för dessa cancerbiomarkörer. / In recent years, targeted therapy has been a growing field of cancer therapy as a more targeted treatment than chemotherapy. These treatments are primarily based on antibody-based pharmaceuticals which are quite large and complex, increasing the overall cost of the treatment. Thus, an alternative method of both detection and treatment needs to be found to aid patients. Small affinity domains have been created with the goal of enhancing tissue penetration while maintaining a high level of target specificity, leading to fewer side effects. One of the examples for these is the Albumin Binding Domain-Derived Affinity Protein (ADAPT). It has been based on one of the albumin binding domains (ABD) of the streptococcal protein G, with a size of 6.5 kDa. Recently, the ADAPTs were further modified to simultaneously bind albumin and another pertinent target protein of interest, suggesting a longer half-life in patient serum, and enabling the development of newer therapeutics. This project presents the 4th generation of the ADAPT library designed to have improved stability. Phage display selections were performed against three target proteins: carcinoembryonic antigen- related cell adhesion molecule 5 (CEACAM5), a biomarker for colorectal cancer, epithelial cell adhesion molecule (EpCAM), a marker for several gastrointestinal carcinomas and trophoblast cell-surface antigen 2 (Trop2) which is overexpressed in triple-negative breast cancer. The results demonstrate binding towards CEACAM5, EpCAM and Trop2, which has been shown by monoclonal phage ELISA. The binding affinity, secondary structure of the selected binders and bispecific binding towards serum albumin remain to be further assessed. The project thus reveals that the ADAPTs selected against the targets CEACAM5, EpCAM and Trop2 present a massive potential for future clinical applications aimed towards development of diagnostics and therapeutics for these cancer biomarkers.
350

Engineering antibodies to study and improve immunomagnetic isolation of tumour cells

Jain, Jayati January 2013 (has links)
Cell separation based on antibody-targeted magnetic beads has been widely used in a number of applications in immunology, microbiology, oncology and more recently, in the isolation of circulating tumour cells (CTCs) in cancer patients. Although other cell separation techniques such as size based cell filtration and Fluorescence Activated Cell Sorting have also been in popular use, immunomagnetic cell isolation possesses the advantages of high throughput, good specificity and reduced cell stress. However, certain fundamental features of the cell-bead interface are still unknown. In this study, some of the key features of the cell-bead synapse were investigated in an effort to improve the efficiency of immunomagnetic cell isolation and reduce its dependence on high expressing cell surface markers. A clinically relevant antibody fragment (Fab) against tyrosine kinase receptor HER2 was applied to study the immunomagnetic isolation of HER2 expressing cancer cells. First, the minimum number of target proteins required on a cell for it to be isolated was determined. Second, the importance of the primary antibody affinity was investigated, using a series of Fab mutants with known kinetics and it was shown that despite starting with sub-nanomolar affinity, improving Fab affinity increased cell isolation. Third, the influence of the connection between the primary antibody and the bead was studied by comparing Fab bridged to the magnetic bead via a secondary antibody, Protein L or streptavidin; the high affinity biotin-streptavidin linkage increased isolation sensitivity by an order of magnitude. Fourth, the effect of manipulating cytoskeletal polymerization and cell membrane fluidity using small molecules was tested; cholesterol depletion decreased isolation and cholesterol loading increased cell isolation. The insights from these observations were then applied to isolate a panel of cell lines expressing a wide range of surface HER2. While the standard approach isolated less than 10% of low HER2 expressing cancer cells from spiked rabbit and human blood, our enhanced approach with the optimized cholesterol level, antibody affinity and antibody-bead linkage could specifically isolate more than 80% of such cells. The final part of this work focussed on developing an antibody clamp that could physically restrict the antigen within its binding site on the Fab and prevent antigen dissociation, using the HER2-Fab complex and the anti-myc peptide antibody 9E10. Work from this thesis provides useful insights into the molecular and cellular parameters guiding immunomagnetic cell isolation and can be used to extend the range of target receptors and biomarkers for tumour cell isolation and other types of cell separation, thereby enhancing the power and capacity of this approach.

Page generated in 0.1225 seconds