• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 255
  • 54
  • 34
  • 31
  • 8
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 516
  • 516
  • 131
  • 116
  • 76
  • 61
  • 53
  • 47
  • 42
  • 41
  • 37
  • 35
  • 35
  • 33
  • 32
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
221

Studies of conformational changes and dynamics accompanying substrate recognition, allostery and catalysis in bacteriophage lambda integrase

Subramaniam, Srisunder 19 April 2005 (has links)
No description available.
222

An assessment of the conformational profile of bombesin and its mammalian analogues using computational chemistry methods

Sharma, Parul January 2011 (has links)
Submitted in fulfillment of the requirements of the Degree of Doctor of Technology: Chemistry, Durban University of Technology, 2011. / Understanding the dynamics and mechanism of protein folding continues to be one of the central problems in molecular biology. Peptide folding experiments characterize the dynamics and molecular mechanisms of the early events of protein folding. However, generally the highly flexible nature of peptides makes their bioactive conformation assessment reasonably difficult as peptides fold at very fast rates experimentally, requiring probing on the nanosecond time resolution. On the other hand, determining the bioactive conformation of biological peptides is a requirement for the design of peptidomimetics in computer-aided drug design. Peptides offer a unique opportunity to bridge the gap between theoretical and experimental understanding of protein folding. Therefore, the present work focuses on the exploration of the conformational space of biologically active neuropeptides with the aim of characterizing their conformational profile. Specifically, bombesin, neuromedin B (NMB) and neuromedin C (NMC), have been chosen for the current investigations. These peptides are widely distributed in the gastrointestinal tract, spinal cord and brain, and are known to elicit various physiological effects, including inhibition of feeding, smooth muscle contraction, exocrine and endocrine secretions, thermoregulation, blood pressure and sucrose regulations and cell growth. These peptides act as a growth factor in a wide range of tumours including carcinomas of the pancreas, stomach, breast, prostate, and colon. This work is intended to get some insight into the performance of different procedures used to explore the configurational space to provide an adequate atomic description of these systems. Different methodological studies involving utilization of molecular dynamics (MD), multicanonical replica exchange molecular dynamics (REMD) and simulate annealing (SA) are undertaken to explore the folding characteristics and thermodynamics of these neuropeptides. MD and REMD calculations on bombesin peptide have revealed its dual conformational behaviour never discovered before and is described in chapter 3. These results explain the known structure-activity studies and open the door to the understanding of the affinity of this peptide to two different receptors: BB1 and BB2. In the case of NMC, REMD calculations are carried out in explicit and implicit solvents, using the Generalized Born (GB) surface area, and are then complemented with two additional MD simulations performed using Langevin and Berendsen thermostats. The results obtained clearly reveal that REMD, performed under explicit solvent conditions, is more efficient and samples preferentially folded conformations with a higher content of  and γ turns. Moreover, these results show good agreement with the experimental results supporting the role of two -turns for its biological action, as reported in the literature. Finally, the results obtained from MD, REMD and SA calculations on NMB reveal that the peptide has a tendency to adopt both turns and helices suggesting its two different receptor recognizing and binding conformations during its biological action. Hence, the present work provides comprehensive information about the conformational preferences of neuropeptides which could lead to a better understanding of their native conformations for future investigations and point the way towards developing their new antagonists.
223

Intrinsic Local Balancing of Hydrophobic and Hydrophilic Residues in Folded Protein Sequences

Borukhovich, Ian January 2015 (has links)
Protein sequences may evolve to avoid highly hydrophobic local regions of sequence, in part because such sequences promote nonnative aggregation. Hydrophobic local sequences are avoided in proteins even in buried regions, where native structure requirements tend to favor them. In this dissertation, I describe three explorations of this hydrophobic suppression. In Chapter 2, I examine the occurrence of hydrophobic and polar residues in completely buried β-strand elements, and find evidence for hydrophobic suppression that decreases as a β-strand becomes more exposed. In Chapter 3, I present a generalized study of the tendency of local sequences to deviate from the hydropathy (hydrophobicity) expected based on their solvent exposure. First, I examined the hydropathy of local and nonlocal sequence groups over a large range of solvent exposures, within folded protein domains in the ASTRAL Compendium database; second, I calculated the tendency of residues within 10 positions of a nonpolar or polar reference residue to deviate from the hydropathy expected based on their structural environment. Both analyses suggested that protein sequences exhibit 'local hydropathic balance' across a range of 6-7 residues, meaning that polar and nonpolar residues are more dispersed in the sequence than expected based on solvent exposure patterns. This balance occurs in all major fold classes, domain sizes and protein functions. An unexpected finding was that it partly arises from a tendency of buried or exposed residues to be flanked by polar or nonpolar residues, respectively. This relationship may result from evolutionary selection for folding efficiency, which might be enhanced by reduced local competition for buried or exposed sites during folding. Finally, in Chapter 4, I present several exploratory analyses, including a decision-tree approach, to visualize the influence of a large number of sequence-structure properties on residue hydrophobicity. Overall, the work in this dissertation confirms that hydrophobic suppression and local hydropathic balance in general are intrinsic properties of folded proteins. I speculate that local hydropathic balance results from selection for reduced aggregation propensity, increased folding efficiency and increased native state specificity. The concept of local hydropathic balance might be used to improve the properties of designed and engineered proteins.
224

The novel mouse [gamma]A-crystallin mutation leads to misfolded protein aggregate and cataract

Cheng, Man-hei., 鄭文熙. January 2009 (has links)
published_or_final_version / Biochemistry / Master / Master of Philosophy
225

Modulating Protein Homeostasis to Ameliorate Lysosomal Storage Disorders

Wang, Fan 06 September 2012 (has links)
The goal of this project has been to develop therapeutic strategies for protein misfolding diseases caused by excessive degradation of misfolded proteins and loss of protein function. The focus for this work is lysosomal storage disorders (LSDs), a group of more than 50 known inherited metabolic diseases characterized by deficiency in hydrolytic enzymes and consequent buildup of lysosomal macromolecules. Gaucher’s Disease (GD) is used as a representative of the family of LSDs in this study. GD is caused by mutations in the gene encoding lysosomal glucocerebrosidase (GC) and consequent accumulation of the GC substrate, glucocerebroside. The most prevalent mutations among GD patients are single amino acid substitutions that do not directly impair GC activity, but rather destabilize its native folding. GC normally folds in the ER and trafficks through the secretory pathway to the lysosomes. GC variants containing destabilizing mutations misfold and are retrotranslocated to the cytoplasm for ER-associated degradation (ERAD). However, evidence shows that if misfolding-prone, mutated GC variants are forced to fold into their 3D native structure, they retain catalytic activity. This study describes strategies to remodel the network of cellular pathways that maintain protein homeostasis and to create a folding environment favorable to the folding of unstable, degradation-prone lysosomal enzyme variants. We demonstrated that folding and trafficking of mutated GC variants can be achieved by modulating the protein folding network in fibroblasts derived from patients with GD to i) upregulate the expression of ER luminal chaperones, ii) inhibit the ERAD pathway, and iii) enhance the pool of mutated GC in the ER amenable to folding rescue. We also demonstrated that the same cell engineering strategies that proved successful in rescuing the folding and activity of mutated GC enable rescue of mutated enzyme variants in fibroblasts derived from patients with Tay-Sachs disease, a LSD caused by deficiency of lysosomal hexosaminidase A activity. As a result, the current study provides insights for the development of therapeutic strategies for GD based on the modulation of general cellular pathways that maintain protein homeostasis that could in principle be applied to the treatment of multiple LSDs.
226

Fast Stochastic Global Optimization Methods and Their Applications to Cluster Crystallization and Protein Folding

Zhan, Lixin January 2005 (has links)
Two global optimization methods are proposed in this thesis. They are the multicanonical basin hopping (MUBH) method and the basin paving (BP) method. <br /><br /> The MUBH method combines the basin hopping (BH) method, which can be used to efficiently map out an energy landscape associated with local minima, with the multicanonical Monte Carlo (MUCA) method, which encourages the system to move out of energy traps during the computation. It is found to be more efficient than the original BH method when applied to the Lennard-Jones systems containing 150-185 particles. <br /><br /> The asynchronous multicanonical basin hopping (AMUBH) method, a parallelization of the MUBH method, is also implemented using the message passing interface (MPI) to take advantage of the full usage of multiprocessors in either a homogeneous or a heterogeneous computational environment. AMUBH, MUBH and BH are used together to find the global minimum structures for Co nanoclusters with system size <em>N</em>&le;200. <br /><br /> The BP method is based on the BH method and the idea of the energy landscape paving (ELP) strategy. In comparison with the acceptance scheme of the ELP method, moving towards the low energy region is enhanced and no low energy configuration may be missed during the simulation. The applications to both the pentapeptide Met-enkephalin and the villin subdomain HP-36 locate new configurations having energies lower than those determined previously. <br /><br /> The MUBH, BP and BH methods are further employed to search for the global minimum structures of several proteins/peptides using the ECEPP/2 and ECEPP/3 force fields. These two force fields may produce global minima with different structures. The present study indicates that the global minimum determination from ECEPP/3 prefers helical structures. Also discussed in this thesis is the effect of the environment on the formation of beta hairpins.
227

Worker responses to work reorganisation in a deep-level gold mining workplace : perspectives from the rock-face

Phakathi, T. T. January 2011 (has links)
In the early 1990s, South Africa’s re-entry into the competitive global marketplace and the first non-racial elections brought significant changes to an industry previously plagued by the racialisation of the labour process. South Africa’s post-apartheid work order led to the restructuring of the gold mining workplace, with a greatly increased emphasis on efficiency, productivity and equity. This period saw a number of gold mines reorganising work through new forms of working practices aimed at creating new kinds of workers who could identify with the goals of the company by expending rather than withdrawing effort at the point of production. There was a shift in the attitude of worker responses to managerial practices, from coercion to consent in the day-to-day running of the production process. This thesis examines worker responses to the reorganisation of work and their impact on worker and workplace productivity in a deep-level gold mine. At the core of this thesis are the perceptions, views, experiences and reactions displayed by underground work teams to management initiatives. The thesis highlights the significance of worker agency in managerially defined work structures – the capacity of underground gold miners to reshape and adapt management strategies in ways that make sense and enable them to maintain control over production and the effort-bargain. The findings presented in this thesis, particularly the gold miners’ informal or coping strategy of making a plan (planisa), reveal that underground work teams are not merely passive or docile reactors to management initiatives. They find opportunity to manipulate (and where necessary, avoid) new forms of management control in a variety of innovative ways that enable them to reassert their power and autonomy over their working day. Underground gold miners are not simply appendages to nor alienated beings in the production process but are able to take control of the production process, independent of management prescriptions, in ways which may embody resistance, consent or a subtle combination of the two. The thesis calls attention to workers’ subjective orientation, agency and resilience to new work structures – not just as recipients but also as shapers of such new work structures within the politics, limits and contradictions of capitalist production systems.
228

Global Analysis of Protein Folding Thermodynamics for Disease State Characterization and Biomarker Discovery

Adhikari, Jagat January 2015 (has links)
<p>Protein biomarkers can facilitate the diagnosis of many diseases such as cancer and they can be important for the development of effective therapeutic interventions. Current large-scale biomarker discovery and disease state characterization studies have largely focused on the global analysis of gene and protein expression levels, which are not directly tied to function. Moreover, functionally significant proteins with similar expression levels go undetected in the current paradigm of using gene and protein expression level analyses for protein biomarker discovery. Protein-ligand interactions play an important role in biological processes. A number of diseases such as cancer are reported to have altered protein interaction networks. Current understanding of biophysical properties and consequences of altered protein interaction network in disease state is limited due to the lack of reproducible and high-throughput methods to make such measurements. Thermodynamic stability measurements can report on a wide range of biologically significant phenomena (e.g., point mutations, post-translational modifications, and new or altered binding interactions with cellular ligands) associated with proteins in different disease states. Investigated here is the use of thermodynamic stability measurements to probe the altered interaction networks and functions of proteins in disease states. This thesis outlines the development and application of mass spectrometry based methods for making proteome-wide thermodynamic measurements of protein stability in multifactorial complex diseases such as cancer. Initial work involved the development of SILAC-SPROX and SILAC-PP approaches for thermodynamic stability measurements in proof-of-concept studies with two test ligands, CsA and a non-hydrolyzable adenosine triphosphate (ATP) analogue, adenylyl imidodiphosphate (AMP-PNP). In these proof-of-principle studies, known direct binding target of CsA, cyclophilin A, was successfully identified and quantified. Similarly a number of known and previously unknown ATP binding proteins were also detected and quantified using these SILAC-based energetics approaches. </p><p>Subsequent studies in this thesis involved thermodynamic stability measurements of proteins in the breast cancer cell line models to differentiate disease states. Using the SILAC-SPROX, ~800 proteins were assayed for changes in their protein folding behavior in three different cell line models of breast cancer including the MCF-10A, MCF-7, and MDA-MB-231 cell lines. Approximately, 10-12% of the assayed proteins in the comparative analyses performed here exhibited differential stability in cell lysates prepared from the different cell lines. Thermodynamic profiling differences of 28 proteins identified with SILAC-SPROX strategy in MCF-10A versus MCF-7 cell line comparison were also confirmed with SILAC-PP technique. The thermodynamic analyses performed here enabled the non-tumorigenic MCF-10A breast cell line to be differentiated from the MCF-7 and MDA-MB-231 breast cancer cell lines. Differentiation of the less invasive MCF-7 breast cancer cell line from the more highly invasive MDA-MB-231 breast cancer cell line was also possible using thermodynamic stability measurements. The differentially stabilized protein hits in these studies encompassed those with a wide range of functions and protein expression levels, and they included a significant fraction (~45%) with similar expression levels in the cell line comparisons. These proteins created novel molecular signatures to differentiate the cancer cell lines studied here. Our results suggest that protein folding and stability measurements complement the current paradigm of expression level analyses for biomarker discovery and help elucidate the molecular basis of disease.</p> / Dissertation
229

Insights into the structure and function of the aggregate-reactivating molecular chaperone CLPB

Nagy, Maria January 1900 (has links)
Doctor of Philosophy / Department of Biochemistry / Michal Zolkiewski / ClpB is a bacterial heat-shock protein that disaggregates and reactivates strongly aggregated proteins in cooperation with the DnaK chaperone system. ClpB contains two ATP-binding AAA+ modules, a linker coiled-coil domain, and a highly mobile N-terminal domain. It forms ring-shaped hexamers in a nucleotide-dependent manner. The unique aggregation reversing chaperone activity of ClpB involves ATP-dependent translocation of substrates through the central channel in the ClpB ring. The initial events of aggregate recognition and the events preceding the translocation step are poorly understood. In addition to the full-length ClpB95, a truncated isoform ClpB80, that is missing the whole N-terminal domain, is also produced in vivo. Various aspects of the structure and function of ClpB were addressed in this work. The thermodynamic stability of ClpB in its monomeric and oligomeric forms, as well as the nucleotide-induced conformational changes in ClpB were investigated by fluorescence spectroscopy. Equilibrium urea-induced unfolding showed that two structural domains-the small domain of the C-terminal AAA+ module and the coiled-coil domain-were destabilized in the oligomeric form of ClpB, which indicates that only those domains change their conformation or interactions during formation of the ClpB rings. Several locations of Trp-fluorescence probes were also found to respond to nucleotide binding. The biological role of the two naturally-occurring ClpB isoforms was also investigated. We discovered that ClpB achieves optimum chaperone activity by synergistic cooperation of the two isoforms that form hetero-oligomers. We found that ClpB95/ClpB80 hetero-oligomers form preferentially at low protein concentration with higher affinity than homo-oligomers of ClpB95. Moreover, hetero-oligomers bind to aggregated substrates with a similar efficiency as homo-oligomers of ClpB95, do not show enhanced ATPase activity over that of the homo-oligomers, but display a strongly stimulated chaperone activity during the reactivation of aggregated proteins. We propose that extraction of single polypeptides from aggregates and their delivery to the ClpB channel for translocation is the rate-limiting step in aggregate reactivation and that step is supported by the mobility of the N-terminal domain of ClpB. We conclude that the enhancement of the chaperone activity of the hetero-oligomers is linked to an enhancement of mobility of the N-terminal domains.
230

The (Un)Folding of Multidomain Proteins Through the Lens of Single-molecule Force-spectroscopy and Computer Simulation

Scholl, Zackary Nathan January 2016 (has links)
<p>Proteins are specialized molecules that catalyze most of the reactions that can sustain life, and they become functional by folding into a specific 3D structure. Despite their importance, the question, "how do proteins fold?" - first pondered in in the 1930's - is still listed as one of the top unanswered scientific questions as of 2005, according to the journal Science. Answering this question would provide a foundation for understanding protein function and would enable improved drug targeting, efficient biofuel production, and stronger biomaterials. Much of what we currently know about protein folding comes from studies on small, single-domain proteins, which may be quite different from the folding of large, multidomain proteins that predominate the proteomes of all organisms.</p><p>In this thesis I will discuss my work to fill this gap in understanding by studying the unfolding and refolding of large, multidomain proteins using the powerful combination of single-molecule force-spectroscopy experiments and molecular dynamic simulations.</p><p>The three model proteins studied - Luciferase, Protein S, and Streptavidin - lend insight into the inter-domain dependence for unfolding and the subdomain stabilization of binding ligands, and ultimately provide new insight into atomistic details of the intermediate states along the folding pathway.</p> / Dissertation

Page generated in 0.0732 seconds