• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 255
  • 54
  • 34
  • 31
  • 8
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 516
  • 516
  • 131
  • 116
  • 76
  • 61
  • 53
  • 47
  • 42
  • 41
  • 37
  • 35
  • 35
  • 33
  • 32
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
261

NMR studies of the ADR1 zinc finger transcription factor /

Schaufler, Lawrence E. January 2001 (has links)
Thesis (Ph. D.)--University of Washington, 2001. / Vita. Includes bibliographical references (leaves 202-216).
262

The Epstein-Barr virus nuclear antigens 1 & 5 : study of virus-host cellular protein interactions /

Forsman, Alma, January 2009 (has links)
Diss. (sammanfattning) Göteborg : Göteborgs universitet, 2009. / Härtill 3 uppsatser.
263

PSSMs : not just roadkill on the information superhighway /

Ng, Pauline Crystal. January 2002 (has links)
Thesis (Ph. D.)--University of Washington, 2002. / Vita. Includes bibliographical references (leaves 93-101).
264

Structure and dynamics of small proteins by NMR /

Tomaszewski, John William, January 2002 (has links)
Thesis (Ph. D.)--University of Washington, 2002. / Vita. Includes bibliographical references (leaves 141-161).
265

Folding kinetics and redesign of Peptostreptococcal protein L and G /

Nauli, Sehat. January 2003 (has links)
Thesis (Ph. D.)--University of Washington, 2003. / Vita. Includes bibliographical references (leaves 78-86).
266

Force Sensitivity of the Von Willebrand Factor A2 Domain

Xu, Amy Jia 06 October 2014 (has links)
Von Willebrand factor (VWF) is a multimeric glycoprotein that critically supports platelet aggregation in hemostasis. Disordered VWF function causes both thrombotic and bleeding disorders, and genetic defects in VWF are responsible for von Willebrand’s disease (VWD), the most common inherited bleeding disorder in humans. Very large VWF multimers exhibit the greatest thrombogenic activity, which is attenuated by ADAMTS13 cleavage in the A2 domain. A2 cleavage is regulated by mechanical force, and pathologically high shear forces are known to enhance proteolysis and cause bleeding in patients. Enhanced cleavage is also described in patients with VWD 2A mutations. In contrast, VWF A2 is stabilized against cleavage by a calcium binding site within A2. Single molecule studies have demonstrated that mechanical unfolding is required for A2 cleavage to expose the scissile bond. In this dissertation, we aim to better understand the mechanosensitivity of A2 cleavage by characterizing the force sensitivity of A2 unfolding and refolding. We first characterized the interaction between VWF A2 and calcium using bulk isothermal calorimetry and thermal denaturation assays. In parallel, we used single molecule optical tweezers to characterize A2 unfolding and refolding. Calcium was found to bind A2 with high affinity, stabilize A2 against thermal denaturation, and enhance domain refolding. In contrast, we found that VWD 2A mutations destabilize the A2 domain against thermal denaturation. R1597W, the most common VWD 2A mutation, lies within the calcium binding loop and exhibited diminished calcium stabilization against thermal denaturation. Using optical tweezers, we found that R1597W also diminished A2 refolding. R1597W refolding in the presence of calcium was similar to that of wild-type A2 in the absence of calcium, suggesting that loss of calcium stabilization contributes to the disease mechanism of R1597W. Other VWD 2A mutations lying outside the calcium binding loop also destabilized A2, but retained calcium mediated stabilization. These studies provide a better understanding of VWD 2A pathophysiology and offer structural insights into A2 unfolding and refolding pathways. By exploring the role of mechanical force in regulating VWF cleavage, this work moves towards a better understanding of how hydrodynamic forces within the vasculature regulate VWF function in hemostasis and thrombosis.
267

Role Of Zinc In Oligomerization Of Metabolic Hormones

Schnittker, Karina January 2014 (has links)
Obesity rates have risen steeply in recent decades. This is accompanied with increased prevalence of several obesity-related disorders including type 2 diabetes. Genetic, environmental, and lifestyle factors (increased caloric intake and/or decreased physical activity) predispose individuals to type 2 diabetes by decreasing the body's responsiveness to the pancreatic hormone insulin, a physiological phenomenon commonly referred to as insulin resistance. Insulin resistance occurs due to induction of inflammation characterized by increased secretion of pro-inflammatory cytokines from enlarged adipose tissue, endoplasmic reticulum stress, and oxidative stress associated with excess blood glucose. There is a strong correlation between insulin resistance and decreased circulating levels of adiponectin (APN), a hormone implicated in promoting insulin-like activities. Further, inflammation negatively affects both insulin and adiponectin levels. It is recognized that folding of APN 18mer-subunits (insulin-sensitizing oligomer) is hindered in obese and type 2 diabetic individuals. Likewise, formation of normal hexameric insulin complex is compromised in type 2 diabetes. Insulin biogenesis, packaging, and assembly are impaired and unable to compensate for high blood glucose levels. As insulin and APN are key metabolic hormones essential for proper glucose regulation, maintaining their correct folding and assembly is required for conserving overall metabolic homeostasis. This dissertation centers on investigating proper assembly pathways of APN and insulin isoforms to form the higher order complexes necessary for their function. The interaction between APN oligomers was studied in the presence and absence of zinc, previously shown to inhibit formation of disulfide bonds in APN. We observed that zinc protects APN from collapse under acidic conditions and likely stabilizes oligomers through high affinity histidine coordination. The interaction between oligomers was further assessed by analyzing conformational differences between oligomers through tryptophan fluorescence. Reduced oligomers were observed to have significant structural differences compared to oxidized oligomers indicated by changes in fluorescent intensities. The capacity of APN chaperone DSBA-L to promote assembly was also evaluated although no significant changes were observed. In addition, the interaction between zinc and insulin was assessed where we observed that in the presence of zinc, insulin is significantly protected from reduction and precipitation. Zinc formed large complexes with insulin under reducing environments to induce high structural stability of insulin oligomers. We then utilized the strong conformational stability of insulin to develop a novel insulin analog with properties to slowly release insulin in circulation and more quickly in the presence of high glucose concentrations. Insulin modification is at preliminary stages and requires further experimentation. Together, these results indicate that zinc plays a significant role in multimerizing properties to provide high stability towards APN and insulin structures. Zinc enhances multimerization of oligomers to both promote activity of APN and protect insulin from reduction and premature breakdown to monomers. Through this study we better identified the folding pathway of APN and elucidated the strong intermolecular forces involved in oligomer association. In addition, the multimerization pattern of insulin to large conformation complexes is observed to mediate protection under reducing conditions. This has implications in the development of new therapeutic options to promote insulin-sensitization and insulin activity to regulate plasma glucose levels. In addition, we propose the development of a novel insulin-analog to mimic physiological insulin secretion, currently unavailable in the market.
268

A motion planning approach to protein folding

Song, Guang 30 September 2004 (has links)
Protein folding is considered to be one of the grand challenge problems in biology. Protein folding refers to how a protein's amino acid sequence, under certain physiological conditions, folds into a stable close-packed three-dimensional structure known as the native state. There are two major problems in protein folding. One, usually called protein structure prediction, is to predict the structure of the protein's native state given only the amino acid sequence. Another important and strongly related problem, often called protein folding, is to study how the amino acid sequence dynamically transitions from an unstructured state to the native state. In this dissertation, we concentrate on the second problem. There are several approaches that have been applied to the protein folding problem, including molecular dynamics, Monte Carlo methods, statistical mechanical models, and lattice models. However, most of these approaches suffer from either overly-detailed simulations, requiring impractical computation times, or overly-simplified models, resulting in unrealistic solutions. In this work, we present a novel motion planning based framework for studying protein folding. We describe how it can be used to approximately map a protein's energy landscape, and then discuss how to find approximate folding pathways and kinetics on this approximate energy landscape. In particular, our technique can produce potential energy landscapes, free energy landscapes, and many folding pathways all from a single roadmap. The roadmap can be computed in a few hours on a desktop PC using a coarse potential energy function. In addition, our motion planning based approach is the first simulation method that enables the study of protein folding kinetics at a level of detail that is appropriate (i.e., not too detailed or too coarse) for capturing possible 2-state and 3-state folding kinetics that may coexist in one protein. Indeed, the unique ability of our method to produce large sets of unrelated folding pathways may potentially provide crucial insight into some aspects of folding kinetics that are not available to other theoretical techniques.
269

Molecular mechanisms of substrate selection and protein folding on the ribosome

Mittelstaet, Joerg 19 June 2012 (has links)
No description available.
270

Fluorescence spectroscopic studies of protein conformational dynamics / Fluorescence spectroscopic studies of protein conformational dynamics

Kroehn, Phillip Gunther 21 October 2013 (has links)
No description available.

Page generated in 0.0506 seconds