• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 5
  • 5
  • 5
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

EVIDENCE FOR ADAPTER-MEDIATED SUBSTRATE SELECTION IN ENDOPLASMIC RETICULUM ASSOCIATED DEGRADATION

Corcoran, Kathleen M. January 2009 (has links)
Viruses have evolved a multitude of mechanisms, which allow immune evasion in both initial and persistent infection. Understanding the intricacies of these pathways is essential to our future ability to combat primary and reactive viral infections. The murine gamma-2 herpesvirus 68 (γHV68) encodes a protein mK3, which targets Major Histocompatibility Complex (MHC) class I heavy chains for ubiquitin-dependent proteasome degradation. MK3 is able to target and ubiquitinate MHC class I by binding to Endoplasmic Reticulum (ER) resident proteins tapasin, Transporter associated with antigen processing (TAP) 1 and TAP2 that are subunits in the complex known as the peptide-loading complex (PLC). The aforementioned characteristics of mK3 make this novel protein an excellent vehicle to study MHC class I assembly, immune evasion, and ER associated degradation (ERAD). Deepening our understanding of class I assembly and viral immune evasion will impact both the fields of immunology and virology. The homology between γHV68 and many of the human γ-herpesviruses makes this an indispensable model to clarify mechanisms that can then be applied to a broader spectrum of viruses. ERAD, an emerging field of study, is known to play a key role in numerous cellular housekeeping pathways as well as a number of disease states. Illuminating the mechanisms implicated in the mK3-mediated ubiquitination of MHC class I, specifically requirements for substrate recognition and degradation, will yield an increased understanding of cellular pathways involved in ERAD. The studies in this dissertation aim to expand our understanding of the relationship between mK3 and adapter proteins TAP/tapasin as well as mK3 and mK3-targeted substrates. The results show that TAP/tapasin act as adapter proteins by recruiting substrates for mK3. Further, mK3 ubiquitinates TAP/tapasin-associated substrates as long as the substrates have a tail greater than 6aa in length and the tail possesses an ubiquitin acceptor residue (lysine, serine or threonine). These studies also confirm that location of a protein within the PLC will determine the substrate’s susceptibility to mK3-mediated degradation. In the field of ubiquitin ligases and ERAD, these studies lend support to the concept of adapter mediated substrate recruitment.
2

Modulating Protein Homeostasis to Ameliorate Lysosomal Storage Disorders

Wang, Fan 06 September 2012 (has links)
The goal of this project has been to develop therapeutic strategies for protein misfolding diseases caused by excessive degradation of misfolded proteins and loss of protein function. The focus for this work is lysosomal storage disorders (LSDs), a group of more than 50 known inherited metabolic diseases characterized by deficiency in hydrolytic enzymes and consequent buildup of lysosomal macromolecules. Gaucher’s Disease (GD) is used as a representative of the family of LSDs in this study. GD is caused by mutations in the gene encoding lysosomal glucocerebrosidase (GC) and consequent accumulation of the GC substrate, glucocerebroside. The most prevalent mutations among GD patients are single amino acid substitutions that do not directly impair GC activity, but rather destabilize its native folding. GC normally folds in the ER and trafficks through the secretory pathway to the lysosomes. GC variants containing destabilizing mutations misfold and are retrotranslocated to the cytoplasm for ER-associated degradation (ERAD). However, evidence shows that if misfolding-prone, mutated GC variants are forced to fold into their 3D native structure, they retain catalytic activity. This study describes strategies to remodel the network of cellular pathways that maintain protein homeostasis and to create a folding environment favorable to the folding of unstable, degradation-prone lysosomal enzyme variants. We demonstrated that folding and trafficking of mutated GC variants can be achieved by modulating the protein folding network in fibroblasts derived from patients with GD to i) upregulate the expression of ER luminal chaperones, ii) inhibit the ERAD pathway, and iii) enhance the pool of mutated GC in the ER amenable to folding rescue. We also demonstrated that the same cell engineering strategies that proved successful in rescuing the folding and activity of mutated GC enable rescue of mutated enzyme variants in fibroblasts derived from patients with Tay-Sachs disease, a LSD caused by deficiency of lysosomal hexosaminidase A activity. As a result, the current study provides insights for the development of therapeutic strategies for GD based on the modulation of general cellular pathways that maintain protein homeostasis that could in principle be applied to the treatment of multiple LSDs.
3

Analysis of Clp1-dependent UPR modulation in Ustilago maydis

Pinter, Niko 06 June 2019 (has links)
No description available.
4

Human δ opioid receptor Phe27 and Cys27 variants:the role of heteromerization and pharmacological chaperones in receptor processing and trafficking

Leskelä, T. (Tarja) 29 November 2011 (has links)
Abstract The opioid receptors (δ, κ and μ) are family A G protein-coupled receptors (GPCRs) that have an important role in the regulation of pain. Like all GPCRs they have a common structure that consists of seven transmembrane domains with an extracellular amino (N)-terminus and an intracellular carboxyl-terminus. The human δ opioid receptor (h(δOR) has two polymorphic variants. A single-nucleotide polymorphism causes replacement of Phe with Cys at the amino acid position 27 in the receptor N-terminus. The allelic frequency of hδORCys27, the less common variant, is about 10% in Caucasians. In this study, the two hδOR variants were expressed in heterologous expression systems and their biosynthesis was characterized in detail using various cell biological and biochemical techniques. In particular, the role of receptor heteromerization and opioid receptor pharmacological chaperones in processing, maturation and trafficking of the variants was assessed. The hδOR variants showed significant differences in maturation and trafficking. The hδORCys27 had a significantly lower maturation efficiency compared with hδORPhe27. In addition, long-term receptor expression led to the accumulation of hδORCys27 in the endoplasmic reticulum (ER) and also impaired receptor targeting to ER-associated degradation. The hδOR variants also differed at the cell surface, as the hδORCys27 variant was internalized constitutively in a faster and more extensive manner than hδORPhe27. However, the variants had similar pharmacological properties and activated G proteins in an identical manner. This study also showed that hδORCys27 acted in a dominant negative manner and redirected some hδORPhe27 precursors to degradation. This resulted in impaired plasma membrane expression of hδORPhe27 in co-transfected cells. The hδOR variants were found to form heteromers early in the secretory pathway, which is the most likely reason for the dominant negative behavior of hδORCys27 on hδORPhe27. The mechanism of action of opioid receptor pharmacological chaperones, membrane-permeable opioid ligands, was investigated in detail using hδORCys27 and its mutant form hδORCys27-(Asp95Ala) as models. Opioid antagonists were found to be able to bind to and stabilize receptor precursors in the ER and enhance their dissociation from the ER molecular chaperone calnexin. This led to an increase in the number of receptors at the plasma membrane. In addition, hδORPhe27, like hδORCys27, was responsive to antagonist treatment whether the variants were expressed together or individually. / Tiivistelmä Opioidireseptorit kuuluvat G-proteiinikytkentäisiin reseptoreihin, ja niillä on tärkeä rooli kipuaistimuksen säätelyssä. Ne ovat solukalvoproteiineja, joiden aminohappoketju läpäisee kalvon seitsemän kertaa. Reseptorien aminoterminaalipää sijaitsee solun ulkopuolella ja karboksiterminaalipää solun sisällä. Ihmisen δ-opioidireseptori esiintyy kahtena polymorfisena muotona, Phe27:nä ja Cys27:nä, joissa aminohappo 27 on joko fenyylialaniini (Phe) tai kysteiini (Cys). Cys27 on harvinaisempi muoto, ja sen yleisyys on noin 10 % eurooppalaista alkuperää olevalla väestöllä. Tämän väitöskirjan tavoitteena oli tutkia δ-opioidireseptorin varianttimuotojen biosynteesiä reseptoriproteiinia tuottavissa heterologisissa solumalleissa (HEK293- ja SH-SY5Y-solut) solubiologisilla ja biokemiallisilla menetelmillä.. Väitöskirja osoittaa, että δ-opioidireseptorin varianttimuotojen välillä on eroa prosessoinnissa. Cys27-varianttia kuljetetaan endoplasmakalvostosta solun pinnalle vähemmän kuin Phe27-varianttia, ja pitkäaikainen reseptorituotanto johtaa vastasyntetisoituneiden reseptorien kerääntymiseen solun sisälle. Samalla reseptorien ohjaus proteasomihajotukseen heikkenee. Soluissa, jotka tuottavat molempia varianttimuotoja samanaikaisesti, Cys27-variantin havaittiin ohjaavan myös Phe27-varianttia proteasomihajotukseen vähentäen sen kuljetusta solun pinnalle. Tämä Cys27-variantin dominanttinegatiivinen ominaisuus johtuu todennäköisesti siitä, että variantit muodostavat dimeerisen rakenteen endoplasmakalvostossa. Havaittiin myös, että Cys27-varianttireseptorit ohjataan solun pinnalta lysosomihajotukseen tehokkaammin kuin vastaavat Phe27-varianttimuodot. Prosessointieroista huolimatta variantit eivät poikkea toisistaan farmakologisilta ominaisuuksiltaan, ja ne aktivoivat G proteiineja samalla tavalla. Väitöskirjassa tutkittiin myös farmakologisten kaperonien toimintamekanismeja käyttämällä mallina δ-opioidireseptorin Cys27-varianttia ja sen pistemutaatiota (Asp95Ala). Farmakologisten kaperonien eli reseptorispesifisten ligandien todettiin sitoutuvan reseptoreihin endoplasmakalvostossa ja stabiloivan niiden rakennetta, mikä vähentää reseptorin ja proteiinien laadunvalvontaan osallistuvan kaperonin, kalneksiinin, välistä vuorovaikutusta. Tämä johtaa reseptorien määrän kasvuun solun pinnalla.
5

Human δ opioid receptor:the effect of Phe27Cys polymorphism, N-linked glycosylation and SERCA2b interaction on receptor processing and trafficking

Markkanen, P. (Piia) 21 May 2012 (has links)
Abstract The delta opioid receptor (δOR) is a member of the G protein-coupled receptor family. This transmembrane receptor has an important role in the regulation of pain. The OPRD1 gene that encodes the human δOR (hδOR) contains at least 11 single-nucleotide polymorphisms (SNPs). The only nonsynonymous SNP resides in the amino-terminal (N-terminal) domain of the receptor and it replaces Phe at position 27 with Cys, thus introducing an unpaired Cys residue on the extracellular surface of the receptor. The Cys27 variant has been shown to have an allelic frequency of about 10% in Caucasian populations. The polymorphic site is flanked by two putative N-glycosylation sites at Asn18 and Asn33. In this study, the folding, maturation and trafficking of hδOR was assessed using the hδORPhe27 and hδORCys27 variants and the N-glycosylation deficient forms of the latter as models in a heterologous expression system. The effects of N-glycosylation and the unpaired Cys-residue were studied with various biochemical, pharmacological and cell biological methods. In addition, protein-protein interactions of the intracellular hδOR precursors were assessed. The hδORCys27 and hδORPhe27 variants differed significantly in their subcellular localization and maturation efficiency. The newly synthesized hδORCys27 was found to accumulate in the endoplasmic reticulum (ER) prior to its ER-associated degradation in proteasomes. Although a slow maturation rate was characteristic for both variants, only the hδORCys27 had poor maturation efficiency. The cell surface expression of hδORCys27 was further decreased because the constitutive internalization of this receptor was enhanced compared to hδORPhe27. N-linked glycosylation was not required for hδOR function or ligand binding, but was important for the expression of the correctly folded receptor species at the cell surface. The mutant non-N-glycosylated receptor was shown to traffic to the cell surface with enhanced kinetics, but some of the plasma membrane receptors were in a nonnative conformation. Also, the overall levels of the non-N-glycosylated hδORCys27 were decreased as the receptor was efficiently internalized for lysosomal degradation in a constitutive fashion. The hδORCys27 and hδORPhe27 precursors were found to interact with several ER localized proteins, such as calnexin (CNX), protein disulfide isomerase (PDI) and ERp72. The receptors also associated with the sarco(endo)plasmic reticulum calcium ATPase 2b (SERCA2b), which was shown to occur during translocation of the receptor to the ER membrane or immediately thereafter. The interaction was not receptor N-glycan dependent and the normal functional activity of SERCA2b was shown to be required for proper cell surface expression of hδOR. / Tiivistelmä δ-opioidireseptori kuuluu G-proteiinikytkentäisiin reseptoreihin, ja sillä on tärkeä rooli kivun säätelyssä. Ihmisen δ-opioidireseptoria koodaavassa OPRD1 geenissä on havaittu ainakin 11 yhden nukleotidin polymorfiaa. Vain yksi tunnetuista polymorfioista aiheuttaa muutoksen proteiinin aminohapposekvenssiin. Se sijaitsee reseptorin aminoterminaalisessa osassa ja se muuttaa fenyylialaniinin (Phe) kohdassa 27 kysteiiniksi (Cys), joka on pariton. Cys27-variantin yleisyys eurooppalaisessa väestössä on noin 10 %. Polymorfisen kohdan molemmilla puolilla on N-glykosylaatiokohdat asparagiineissa Asn18 ja Asn33. Tämän työn tavoitteena oli tutkia δ-opioidireseptorin laskostumista, maturaatiota ja kuljetusta heterologisessa solumallissa käyttämällä Phe27- ja Cys27-variantteja sekä Cys27-variantin N-glykosyloimatonta mutanttia. Cys27-polymorfian ja N-glykosylaation vaikutuksia tutkittiin useilla biokemiallisilla, farmakologisilla sekä solubiologisilla menetelmillä. Lisäksi työssä tutkittiin solunsisäisen δ-opioidireseptorin esiasteen vuorovaikutusta muiden proteiinien kanssa. Phe27- ja Cys27-varianttien sijainti solun sisällä ja maturaatiotehokkuus eroavat toisistaan merkittävästi. Vastasyntetisoitu Cys27-variantti kerääntyy endoplasmakalvostoon, josta se ohjautuu proteasomihajoitukseen. Molemmat variantit kulkeutuvat solun pintaan hitaasti. Cys27-variantin prosessointi on huomattavasti tehottomampaa ja sen määrää solun pinnalla vähentää myös lisääntynyt ohjaaminen solunsisäiseen lysosomihajotukseen. N-glykosylaatiolla ei havaittu olevan vaikutusta reseptorin toimintaan tai ligandin sitomiseen, mutta sillä on tärkeä merkitys oikein laskostuneiden reseptorien kuljetukselle solun pinnalle, koska osa pintaan päässeistä N-glykosyloimattomista reseptoreista on muodossa, johon reseptorispesifinen ligandi ei sitoudu. Vaikka mutanttireseptori kulkeutuukin solun pintaan nopeammin, sen määrä solun pinnalla on alhaisempi, koska mutanttireseptori ohjataan huomattavan nopeasti solun pinnalta lysosomihajotukseen. Phe27- ja Cys27-varianttien havaittiin olevan myös vuorovaikutuksessa eräiden endosomaalisen kalvoston proteiinien kanssa, kuten kalneksiinin, proteiinidisulfidi-isomeraasin ja ERp72-proteiinin. Kumpikin reseptori havaittiin yhteisessä rakenteessa sarko(endo)plasmakalvoston kalsium-ATPaasi 2b -pumpun (SERCA2b) kanssa N-glykosylaatiosta riippumattomalla tavalla. Nämä proteiiniryhmät muodostuvat, kun reseptori liitetään synteesin aikana endoplasmakalvostoon tai heti sen jälkeen. Vuorovaikutus toiminnallisen SERCA2b:n kanssa havaittiin tärkeäksi toimintakykyisen δ-opioidireseptorin esiintymiselle solun pinnassa.

Page generated in 0.1056 seconds