• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 9
  • 9
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Studies in the physiology and cytology of sporidial fusion and the factors influencing infection of corn plants by Ustilago zeae I. Physiological and cytological studies of sporidial fusion in Ustilago zeae. II. A study of the factors influencing infection and the development of a differential inoculation technique for testing the resistance of inbred lines of corn to infection by Ustilago zeae /

Bowman, Donald Houts, January 1939 (has links)
Thesis (Ph. D.)--University of Wisconsin--Madison, 1939. / Typescript. Includes abstract and vita. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references.
2

The inheritance of reaction to Ustilago zeae in maize ...

Immer, Forrest Rhinehart, January 1900 (has links)
Thesis (Ph. D.)--University of Minnesota, 1927. / Biography. Bibliography: p. 52-55.
3

The microtubule cytoskeleton of the corn smut fungus Ustilago maydis

Shiel, Anna Iwona January 2014 (has links)
Microtubules in the fungal pathogen Ustilago maydis have important roles, which include polar budding, morphogenesis and nuclear migration. They also serve as tracks for molecular motors, responsible for intracellular transport of organelles and membrane trafficking. Moreover, microtubules are indispensable during both interphase and cell division, and they play a crucial role in long-distance microtubule-based transport, which occurs in neurons or fungal hypha. Therefore, in order to carry out their functions correctly they need to be well organised and stabilised, which is achieved mainly by various microtubule-associated proteins. In this thesis, different aspects of microtubule (MT) cytoskeleton organisation in U. maydis were investigated, using bioinformatics and experimental approaches. In the first part of the thesis I studied the microtubule-associated protein (MAP) repertoire in U. maydis, which has never been done before in a comprehensive way. For this purpose, searches across five eukaryotic model organisms were conducted to identify all of their known MAPs, to query the U. maydis database. In addition, all of the proteins were checked for their domain architecture, to help decide if an orthologue had been found. As a result, 66 potential MAP orthologues were identified. The second part of this thesis focused on identifying novel factors involved in the organisation of the microtubule cytoskeleton using a specially designed genetic screen. This work involved five microtubule-organisation defect (MOD) mutants, generated by UV-mutagenesis, which were characterised by inability to produce long hyphae as well as by short, fragmented microtubules. To find which genes were responsible for this phenotype, the genomes of all mutants were sequenced and compared with a wild-type genome, and mutations in many genes were found. The analysis revealed potential candidate genes responsible for the specific phenotype of the mutants. However, most probably, UV-generated point mutations in more than one gene played a part in the defective microtubule array. In the final part of this thesis, the function of two beta-tubulin isotypes in U. maydis was analysed. Using conditional mutants, I demonstrated that there are subtle functional differences between the two beta tubulins.
4

Characterization of a novel regulator of the unfolded protein response in Ustilago maydis and mammals

Martorana, Domenica 05 June 2019 (has links)
No description available.
5

The identification of a new molecular tool to investigate the role of actin and microtubule cytoskeletons in the endocytosis pathway of the pathogenic fungus Ustilago maydis

Clark, Natalie January 2014 (has links)
Endocytosis is essential for the pathogenic development of Ustilago maydis. It has been shown that the initiation of pathogenicity relies upon the ability of the cell to recognize pheromone (a1 or a2) released from its mating partner and subsequently to form conjugated hyphae. The actin and microtubule cytoskeleton plays an essential role in all aspects of cell growth. A component of the actin cytoskeleton, the filamentous actin is required for cell-cell fusion, whereas the molecular motors, kinesin and dynein, move along microtubules and provide the long distance transport of many proteins and they are important in cell growth and pathogenicity. In this thesis, we investigated the role of the cytoskeleton in endocytosis and a1 pheromone transport, using a fluorescently labelled derivative of the a1 pheromone. We confirmed that uptake of the a1 pheromone is also receptormediated. In addition, we have shown that pheromone transport towards the cellular vacuole requires the actin and microtubule cytoskeletons. Furthermore, we revealed that the microtubule-dependent motors kinesin-1 and kinesin-3 and dynein were shown to be essential in the delivery of the pheromone to vacuoles. Moreover, a mutation in the early endosomal protein Yup1 gene causes a stop in delivery of the synthetic pheromone to the vacuole. This suggests that it travels with early endosomes. Within the actin cytoskeleton, we analysed the dynamics of actin patches in the presence of the synthetic pheromone and found that the dynamics of the patches increased significantly. Additionally, in the presence of an over-expression of the tail domain of the molecular motor myosin-5, the dynamics of the patches were significantly reduced and their intensity diminished.
6

The role of the tail of fungal kinesin-3 in binding to early endosomes and their role in plant pathogenicity

Bielska, Ewa January 2013 (has links)
The dimorphic fungus Ustilago maydis is a pathogen of maize and it was used for decades to understand the molecular basis of plant pathogenicity aspects. Recently, much effort went into understanding the cell biology that underlies the virulence of U. maydis. It was shown previously that early endosomes (EEs) move bidirectionally within fungal hyphal cells. Although it was shown that the motility of EEs facilitates growth of the infectious hypha and mutants defective for kinesin-3 (Kin3), the major EE transporter, exhibit impaired polarized growth, the importance of EEs and their motility in plant colonization is not known. The first part of this thesis is focused on the role of EE motility during plant infection. In collaboration with Natalie Steinberg, who performed the plant infection assays, I used a synthetic molecular anchor, K1rPX, to block the motility of EEs at early and late stages during the host plant infection and I found that EE motility is essential during the first two days of pathogenic development, when infectious hyphae exhibit most prominent elongation, whereas blockage of EE motility after 3 days post infection does not inhibit plant colonization. Moreover, I documented that the blockage of EE motility during early stages of the infection causes high plant defence response, which means that the pathogen becomes recognized by the host plant defence system. These results indicate that EE motility is crucial during initial stages of the plant host infection and enables colonization by U. maydis and additionally suggests involvement of EEs in some defence response machinery. The second part of the thesis addresses the relationship between Kin3, the major motor for EE motility, and the microtubule (MT) array. I demonstrate here that Kin3 uses all MT tracks available in the cell, which is in contrast to published results in other systems. In the third part I focused on the interaction between Kin3 and the EEs. I found that the pleckstrin homology (PH) domain localized at the distal part of the Kin3 tail is of minor importance for EE association. This conclusion is supported by in vivo experiments, showing that truncated Kin3PH, which lacks the PH domain, was still able to bind to the organelles. By systematic truncation of parts of the Kin3 tail I found two adjacent regions, a DUF3694 domain and a "linker" region, that are important for binding of Kin3 to EEs. By using a synthetic anchor composed of Kin1 rigor domain and selected Kin3 domains I proved that both domains anchor the EEs to MTs and inhibit EE motility. I also showed that the PH domain is not able to block EE motility. In collaboration with Dr. Nicholas Harmer, who performed structural modelling of selected PH domains, I demonstrated that the PH domain is likely to interact with the motor domain of Kin3. This result was confirmed by using a yeast-two hybrid approach and a protein affinity assay. This indicates a globular organization of the Kin3 motor, which was confirmed by a split-YFP assay in living cells. Deletion of the PH domain and most probably lack of intramolecular interaction between the tail and motor domain reduces Kin3 motility parameters like velocity, frequency and run length indicating that the interaction of the PH domain with the motor domain has a role in the control of Kin3 motility.
7

The Unfolded Protein Response and its interplay with the MAPK-mediated pheromone response pathway in Ustilago maydis

Schmitz, Lara 11 July 2019 (has links)
No description available.
8

Analysis of Clp1-dependent UPR modulation in Ustilago maydis

Pinter, Niko 06 June 2019 (has links)
No description available.
9

The cytoplasmic dynein motor complex at microtubule plus-ends and in long range motility of early endosomes, microtubule plus-end anchorage and processivity of cytoplasmic dynein

Roger, Yvonne January 2013 (has links)
Cytoplasmic dynein is a microtubule-dependent motor protein which participates in numerous cellular processes. The motor complex consists of two heavy chains, intermediate, light intermediate and 3 families of light chains. Dynein is able to bind to these accessory chains as well as to regulatory proteins which enables the motor protein to fulfil such a variety of cellular processes. The associated light chains participate in long-distance organelle and vesicle transport in interphase and in chromosome segregation during mitosis. However, how these light chains control the activity of the motor protein is still unknown. In this study, I combine molecular genetics and live cell imaging to elucidate the role of the associated dynein light intermediate and light chains in dynein behaviour and early endosome (EE) motility in hyphal interphase cells as well as the anchorage of dynein to the microtubule (MT) plus-end in interphase and mitotic cells. I show that the dynein light intermediate chain (DLIC) as well as the light chain 2 (DLC2, Roadblock) are involved in dynein processivity and EE movement in interphase. The downregulation of either protein results in short hyphal growth which could be caused by a decreased runlength of EE and dynein. In addition, both proteins participate in dynein anchorage to the microtubule plus-end in interphase and mitosis as well as in spindle elongation during mitosis. Each protein causes a decrease of the motor protein dynein at MT plus-ends. Surprisingly, I found only minor or no defects in LC8 or Tctex mutants in the observed functions of dynein. LC8 seems to affect the dynein but not the EE runlength. In this case, dynein is still able to move into the bipolar MT array from where kinesin3 is able to take over EEs and move them towards the cell center. In contrast, Tctex has no effect on dynein or EE runlength or any other observed dynein function in hyphal cells. However, it causes a reduction in spindle elongation. Taken together, DLIC and DLC2 are important for dynein behaviour in long distance transport as well as in spindle positioning and elongation during mitosis. Furthermore, I studied the involvement of the dynein regulators Lis1 and NudE as well as the plus-end binding protein Clip1 (Clip-170 homologue) in the anchorage of dynein to the astral microtubule plus-ends during mitosis. The disruption of the anchorage complex at the astral MT plus-end causes a decrease in dynein number at this site and therefore slower spindle elongation in Anaphase B. Taken together, all three proteins are involved in anchorage of dynein to the astral microtubule tip and the subsequent spindle elongation. Furthermore, these findings also show that Ustilago maydis evolved two different mechanisms to anchor the motor protein to MT plus-ends in hyphal and mitotic cells. The plus-end binding protein Peb1 (EB1 homologue) and the dynein regulator dynactin mediate the dynein anchorage in hyphal cells whereas in mitotic cells the plus-ends binding protein Clip1 and the dynein regulators Lis1 and NudE anchor dynein to astral MT plus-ends.

Page generated in 0.0464 seconds