• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 255
  • 54
  • 34
  • 31
  • 8
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 516
  • 516
  • 131
  • 116
  • 76
  • 61
  • 53
  • 47
  • 42
  • 41
  • 37
  • 35
  • 35
  • 33
  • 32
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
311

Simulação computacional do enovelamento de proteínas utilizando o Modelo HP

Silva, Paula Martins da [UNESP] 03 August 2009 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:30:19Z (GMT). No. of bitstreams: 0 Previous issue date: 2009-08-03Bitstream added on 2014-06-13T18:40:21Z : No. of bitstreams: 1 silva_pm_me_bauru.pdf: 730929 bytes, checksum: 5e701d75d10b9d8e43b1b946295d7e3f (MD5) / Compreender como a sequencia de aminoácidos de uma proteína determina a sua funcionalidade biológica é de grande importância conceitual e prática como, por exemplo, no projeto de novas drogas. As proteínas consistem em polipeptídios composta por 20 L- aminoácidos diferentes, (formados pelos átomos de hidrogênio, carbono, nitrogênio e oxigênio) ligados por ligações peptídicas. O que torna as proteínas diferentes não é o número de aminoácidos, mas a sequencia deles na cadeia polipeptídica. No presente trabalho, apresentamos uma simulação computacional, com modelo simples, para a enumeração exata de todas as conformações possíveis em uma rede de todas as conformações possíveis em uma rede quadrada para n = 1 a 17 monômeros. Resultados mostram que 2.155.667 conformações diferentes são possíveis. Neste trabalho, confirmamos estes resultados e atribuímos aos sítios da rede quadrada os monômetros no modelo que foram usados para computar o número de contatos entre os monômeros, distribuição da energia configuracional, distância em relação a frequencia relativa de todas as conformações, contato topológico de longo alcance, aplicamos e comparamos os resultados das simulações do modelo com sequencia de Epitopos. / The understanding of how the amino acids sequence determine the protein biological funtionality is one of the most practical and conceptual challenge as, for example, in the development of new drugs. The protein molecule consist of a long chain of polupeptides composed of 20 different amino acids (essentially formed by carbon, oxygen, nitrogen, and hydrogen atoms) linked together by peptide chemical bonds. What makes proteins different is not the number of amino acids in the chain but the amino acid sequence along the chain. In the present a computer simulation of a simple protein model, using the techinique of exact enumeration over all the possible conformations in the square lallice to a sequence of n = 1 to 17 monomers. The results indicate that we can found 2.155.1667 different possible conformations. We present the results for the Cartesian coordinates of all the monomers along the chain and computed the monomer-monomer contacts, the configurational energy, the long-range topological contact and a possible application of the HP model for a variety of epitopes sequences.
312

Protein Folding & Dynamics Using Multi-scale Computational Methods

January 2014 (has links)
abstract: This thesis explores a wide array of topics related to the protein folding problem, ranging from the folding mechanism, ab initio structure prediction and protein design, to the mechanism of protein functional evolution, using multi-scale approaches. To investigate the role of native topology on folding mechanism, the native topology is dissected into non-local and local contacts. The number of non-local contacts and non-local contact orders are both negatively correlated with folding rates, suggesting that the non-local contacts dominate the barrier-crossing process. However, local contact orders show positive correlation with folding rates, indicating the role of a diffusive search in the denatured basin. Additionally, the folding rate distribution of E. coli and Yeast proteomes are predicted from native topology. The distribution is fitted well by a diffusion-drift population model and also directly compared with experimentally measured half life. The results indicate that proteome folding kinetics is limited by protein half life. The crucial role of local contacts in protein folding is further explored by the simulations of WW domains using Zipping and Assembly Method. The correct formation of N-terminal β-turn turns out important for the folding of WW domains. A classification model based on contact probabilities of five critical local contacts is constructed to predict the foldability of WW domains with 81% accuracy. By introducing mutations to stabilize those critical local contacts, a new protein design approach is developed to re-design the unfoldable WW domains and make them foldable. After folding, proteins exhibit inherent conformational dynamics to be functional. Using molecular dynamics simulations in conjunction with Perturbation Response Scanning, it is demonstrated that the divergence of functions can occur through the modification of conformational dynamics within existing fold for β-lactmases and GFP-like proteins: i) the modern TEM-1 lactamase shows a comparatively rigid active-site region, likely reflecting adaptation for efficient degradation of a specific substrate, while the resurrected ancient lactamases indicate enhanced active-site flexibility, which likely allows for the binding and subsequent degradation of different antibiotic molecules; ii) the chromophore and attached peptides of photocoversion-competent GFP-like protein exhibits higher flexibility than the photocoversion-incompetent one, consistent with the evolution of photocoversion capacity. / Dissertation/Thesis / Ph.D. Physics 2014
313

Enovelamento de proteínas e ligações de hidrogênio - estudo de modelos mínimos / Protein folding and hydrogen bonds - study of minimal models

Fernando Takeshi Tanouye 22 September 2017 (has links)
Este estudo tem como finalidade principal a análise termodinâmica e estatística de proteínas através de modelos mínimos. Uma proteína é um polímero de aminoácidos, cuja função está essencialmente relacionada às conformações espaciais que ela adota em solução aquosa. Na forma funcional (dita nativa), essas conformações flutuam levemente em torno de um mínimo de energia-livre. O processo pelo qual uma cadeia protéica transita de estados não-nativos para a estrutura nativa é chamado de enovelamento, ou dobramento. Uma questão em aberto no campo de estudo de proteínas consiste justamente em entender a fundo o processo de enovelamento, cujo avanço tem um vasto potencial de aplicação, desde a predição de estruturas a partir de sequências de aminoácidos até o planejamento de fármacos e moléculas bioativas. Nossa investigação teórica procura abordar aspectos do enovelamento expressos através de grandezas termodinâmicas (energia média, calor específico, número de ligações de hidrogênio, entre outras) derivadas de modelos estatísticos na rede. Assim, num primeiro momento, analisamos o chamado modelo HP, ora por meio de enumeração exata, para cadeias curtas, ora por simulações de Monte Carlo, para cadeias maiores. No primeiro caso, propusemos a existência de uma relação entre a ocorrência de um segundo pico no calor específico associado na literatura à transição de congelamento com uma drástica redução no número de configurações entre os primeiros estados excitados e aqueles de menor energia. Observamos, também, que esse pico pode aparecer tanto para homopolímeros quanto para heteropolímeros, em ambas as redes quadrada e triangular. Num segundo momento, nosso enfoque se voltou para a inclusão de um solvente aquoso (dado pelo modelo de Bell-Lavis) ao sistema inicial. Isso nos possibilitou verificar, usando exclusivamente simulações de Monte Carlo e o algoritmo de Metropolis, o comportamento e a competição das ligações de hidrogênio água-água, água-proteína, proteína-proteína e na primeira camada de solvatação. O modelo acoplado exibiu algumas características do enovelamento, como o colapso hidrofóbico e a separação de monômeros (apolares no núcleo e polares na superfície), embora não capture a desnaturação fria. No apêndice, adicionamos algumas propostas para realização do cálculo numérico da pressão no ensemble canônico, desenvolvidas em paralelo ao projeto principal desta dissertação, mas que, numa primeira análise, verificamos serem consistentes e passíveis de futuros desdobramentos. / The finality of this study is to analyse proteins thermodynamics and statistics through minimal models. A protein is a polymer of amino acids, whose spatial conformations in aqueous solution determine its function. In the functional form (said native), those conformations fluctuates slightly around a free-energy minimum. The process by which a protein chain passes from non-native states to a stable native structure is called protein folding. An open question in the field of protein studies is to understand more deeply the folding process, whose advance can find a wide range of potential applications, since ab initio structure prediction from the amino acids sequence to biomolecules design. The theoretical approaches used here focus on aspects of protein folding given by some thermodynamic quantities (as mean energy, specific heat, number of hydrogen bonds and so on) obtained from statistical lattice models. Initially, we analyse the so-called HP model, at first using exact enumeration for short chains, then by Monte Carlo simulations for longer chains. In the first case, we propose a correlation between the occurrence of a second peak in the specific heat associated in the literature with a freezing transition and a sharp reduction on the number of configurations from the first excited states to the lowest energy states. In addition, we observe that this peak may appear to both homopolymers and heteropolymers on square and triangular lattices. At a second moment, our focus turned to the introduction of a water-like solvent (Bell-Lavis model) to the initial system. This allowed us to verify, exclusively by means of Monte Carlo simulations with Metropolis algorithm, the behavior and competition of hydrogen bonds between water-water molecules, water-protein, and protein-protein monomers and at the first hydration layer. The combined model showed some classical folding properties, as hydrophobic collapse and monomers segregation (apolar residues at the core and polar residues at the surface), although it did not capture cold denaturation. We have included in the appendix some proposals to perform numerical calculations of the canonical pressure, which were developed alongside the main subject of this thesis and a first analysis has proved to be consistent and susceptible to further developments.
314

Mechanisms of protein disulphide isomerase catalyzed disulphide bond formation

Lappi, A.-K. (Anna-Kaisa) 14 September 2010 (has links)
Abstract Protein folding of outer membrane and secreted proteins, including receptors, cytokines and antibodies is often linked to disulphide bond formation. Native disulphide bond formation is complex and is usually the rate limiting step in the folding of such proteins. The enzymes which catalyse the slow steps in disulphide bond formation belong to the protein disulphide isomerase (PDI) family. PDI catalyses formation, reduction and isomerization of newly synthesized disulphide bonds. The mechanisms of action of the PDIs are currently poorly understood and this not only inhibits our understanding of the biogenesis of a range of medically important proteins, and hence associated disease states, but also prevents the effective manipulation of the cellular environment by the biotechnology industry for the production of high value therapeutic proteins. Hence, understanding the mechanism of action of these enzymes is vital for a wide range of medically important processes and therapies. In this study the role of a conserved arginine residue in the catalytic activity of PDI was shown. The movement of this residue into and out of the active site locale of PDI was shown to modulate the pKa of the C-terminal active site cysteine of PDI and by that way to allow the enzyme to act efficiently as catalyst both of oxidation and isomerization reactions. The possible role of hydrogen peroxide produced by sulphydryl oxidases during disulphide bond formation was studied in an oxidative protein refolding assay. Analysis showed that hydrogen peroxide can be used productively to make native disulphide bonds in folding proteins with minimal side reactions. In addition, the kinetics of oxidation and reduction of the <b>a</b> domains of PDI and Pdi1p by glutathione was studied in this thesis. The kinetics obtained with stopped-flow and quenched-flow experiments showed the reactions to be more rapid and complex than previously thought. Significant differences exist between the kinetics of PDI and Pdi1p. This implies that the use of yeast systems to predict physiological roles for mammalian PDI family members should be treated cautiously.
315

The Folding Energy Landscape of MerP

Brorsson, Ann-Christin January 2004 (has links)
This thesis is based on studies, described in four papers, in which the folding energy landscape of MerP was investigated by various techniques. MerP is a water-soluble 72 amino acid protein with a secondary structure consisting of four anti-parallel β-strands and two α-helices on one side of the sheet in the order β1α1β2β3α2β4. The first paper describes the use of CD and fluorescence analysis to examine the folding/unfolding process of MerP. From these experiments it was found that the protein folds according to a two-state model in which only the native and unfolded forms are populated without any visible intermediates. With a rate constant of 1.2 s-1, the folding rate was found to be unusually slow for a protein of this size. The studies presented in the second and third papers were based on measurements of native-state amide proton exchange at different temperatures (Paper II) and GuHCl concentrations (Paper III) in the pre-transitional region. In these studies partially unfolded forms were found for MerP which are essentially unrelated to each other. Thus, in the folding energy landscape of MerP, several intermediates seem to occur on different folding trajectories that are parallel to each other. The slow folding rate of MerP might be coupled to extensive visitation of these conformations. Hydrogen exchange in MerP did also reveal structure-dependent differences in compactness between the denatured states in GuHCl and H2O. In the last paper multivariate data analysis was applied to 2-dimensional NMR data to detect conformational changes in the structure of MerP induced by GuHCl. From this analysis it was suggested that regions involved in the most flexible part of the protein structure are disrupted at rather low denaturant concentrations (&lt; 2.1 M GuHCl) while the native structures of the most stable parts are still not completely ruptured at 2.9 M GuHCl. Finally, the stability, kinetics, contact order and folding nuclei of six proteins with similar topology (MerP, U1A, S6, ADA2h, AcP and HPr) were compared. In this analysis it was found that their folding properties are quite diverse, despite their topological similarities, and no general rules that have been formulated yet can adequately predict their folding behaviour.
316

Modulation of Plasmodium falciparum chaperones PfHsp70-1 and PfHsp70-x by small molecules

Cockburn, Ingrid Louise January 2013 (has links)
The heat shock proteins of ~ 70 kDa (Hsp70s) are a conserved group of molecular chaperones important in maintaining the protein homeostasis in cells, carrying out functions including refolding of misfolded or unfolded proteins. Hsp70s function in conjunction with a number of other proteins including Hsp40 cochaperones. Central to the regulation Hsp70 activity is the Hsp70 ATPase cycle, involving ATP hydrolysis by Hsp70, and stimulation of this ATP hydrolysis by Hsp40. PfHsp70-1, the major cytosolic Hsp70 in the malaria parasite, Plasmodium falciparum, and PfHsp70-x, a novel malarial Hsp70 recently found to be exported to the host cell cytosol during the erythrocytic stages of the P. falciparum lifecycle, are both thought to play important roles in the malaria parasite’s survival and virulence, and thus represent novel antimalarial targets. Modulation of the function of these proteins by small molecules could thus lead to the development of antimalarials with novel targets and mechanisms. In the present study, malarial Hsp70s (PfHsp70-1 and PfHsp70-x), human Hsp70 (HSPA1A), malarial Hsp40 (PfHsp40) and human Hsp40 (Hsj1a) were recombinantly produced in Escherichia coli. In a characterisation of the chaperone activity of recombinant PfHsp70-x, the protein was found to have a basal ATPase activity (15.7 nmol ATP/min/mg protein) comparable to that previously described for PfHsp70-1, and an aggregation suppression activity significantly higher than that of PfHsp70-1. In vitro assays were used to screen five compounds of interest (lapachol, bromo-β-lapachona and malonganenones A, B and C) belonging to two compound classes (1,4 naphthoquinones and prenylated alkaloids) for modulatory effects on PfHsp70-1, PfHsp70-x and HsHsp70. A wide range of effects by compounds on the chaperone activities of Hsp70s was observed, including differential effects by compounds on different Hsp70s despite high conservation (≥ 70 % sequence identity) between the Hsp70s. The five compounds were shown to interact with all three Hsp70s in in vitro binding studies. Differential modulation by compounds was observed between the Hsj1a-stimulated ATPase activities of different Hsp70s, suggestive of not only a high degree of specificity of compounds to chaperone systems, but also distinct interactions between different Hsp70s and Hjs1a. The effects of compounds on the survival of P. falciparum parasites as well as mammalian cells was assessed. Bromo-β-lapachona was found to have broad effects across all systems, modulating the chaperone activities of all three Hsp70s, and showing significant toxicity toward both P. falciparum parasites and mammalian cells in culture. Malonganenone A was found to modulate only the malarial Hsp70s, not human Hsp70, showing significant toxicity toward malarial parasites (IC₅₀ ~ 0.8 μM), and comparatively low toxicity toward mammalian cells, representing therefore a novel starting point for a new class of antimalarials potentially targeting a new antimalarial drug target, Hsp70.
317

Molecular characterisation of the chaperone properties of Plasmodium falciparum heat shock protein 70

Shonhai, Addmore January 2007 (has links)
Heat shock protein 70 (called DnaK in prokaryotes) is one of the most prominent groups of chaperones whose role is to prevent and reverse protein misfolding. PfHsp70 is a heatinducible cytoplasm/nuclear localised Plasmodium falciparum Hsp70. PfHsp70 is thought to confer chaperone cytoprotection to P. falciparum during the development of malaria fever. The objective of this study was to examine the chaperone properties of PfHsp70 using a bioinformatics approach, coupled to in vivo and in vitro analysis. Structural motifs that qualify PfHsp70 as a typical Hsp70 chaperone were identified. Although PfHsp70 has a higher similarity to human Hsc70 than E. coli DnaK, in vivocomplementation assays showed that PfHsp70 was able to reverse the thermosensitivity of E. coli dnaK756 (a temperature sensitive strain whose DnaK is functionally compromised). Two residues (V401 and Q402) in the linker region of PfHsp70 that are critical for its in vivo function were identified. Constructs were generated that encoded the ATPase domain of PfHsp70 and the peptide binding domain of E. coli DnaK (to generate PfK chimera); and the ATPase domain of E. coli DnaK fused to the peptide binding domain of PfHsp70 (KPf). The two chimeras were tested for their ability to reverse the thermosensitivity of E. coli dnaK756 cells. Whilst KPf was able to reverse the thermosensitivity of the E. coli dnaK756 cells, PfK could not. Previously, PfHsp70 purification involved urea denaturation. Using a detergent, polyethylenimine (PEI), PfHsp70 was natively purified. Natively purified PfHsp70 had a basal ATPase activity approximately two times higher than the previously reported activity for the protein purified through urea denaturation. PfJ4, a type II Hsp40, could not stimulate the ATPase activity of PfHsp70 in vitro. Arch and hydrophobic pocket substitutions (A419Y, Y444A and V451F) were introduced in the PfHsp70 peptide binding domain. Similar substitutions were also introduced in the KPf chimera. PfHsp70-V451F (hydrophobic pocket mutant) had marginally compromised in vivo function. However, a similar mutation (V436F), introduced in KPf abrogated the in vivo function of this chimera. The arch and hydrophobic pocket derivatives of PfHsp70 exhibited marginally compromised in vivo function, whilst equivalent mutations in KPf did not affect its in vivo function. The ability of PfHsp70 and its arch/hydrophobic pocket mutants to suppress the heatinduced aggregation of malate dehydrogenase (MDH) in vitro was investigated. Whilst PfHsp70 arch mutants displayed marginal functional loss in vivo, data from in vitro studies revealed that their functional deficiencies were more severe. This is the first study in which an Hsp70 from a parasitic eukaryote was able to suppress the thermosensitivity of an E. coli DnaK mutant strain. Findings from the in vivo and in vitro assays conducted on PfHsp70 suggest that this protein plays a key role in the life-cycle of P. falciparum. Furthermore, this study raised insights that are pertinent to the current dogma on the Hsp70 mechanism of action.
318

Characterisation of Human Hsj1a : an HSP40 molecular chaperone similar to Malarial Pfj4

McNamara, Caryn January 2007 (has links)
Protein folding, translocation, oligomeric rearrangement and degradation are vital functions to obtain correctly folded proteins in any cell. The constitutive or stress-induced members of each of the heat shock protein (Hsp) families, namely Hsp70 and Hsp40, make up the Hsp70/Hsp40 chaperone system. The Hsp40 J-domain is important for the Hsp70-Hsp40 interaction and hence function. The type-II Hsp40 proteins, Homo sapiens DnaJ 1a (Hsj1a) and Plasmodium falciparum DnaJ 4 (Pfj4), are structurally similar suggesting possible similar roles during malarial infection. This thesis has focussed on identifying whether Hsj1a and Pfj4 are functionally similar in their interaction with potential partner Hsp70 chaperones. Analysis in silico also showed Pfj4 to have a potential chaperone domain, a region resembling a ubiquitin-interacting motif (UIM) corresponding to UIM1 of HsjIa, and another highly conserved region was noted between residues 232-241. The highly conserved regions within the Hsp40 J-domains, and those amino acids therein, are suggested to be responsible for mediating this Hsp70-Hsp40 partner interaction. The thermosensitive dnaJ cbpA Escherichia coli OD259 mutant strain producing type-I Agrobacterium tumefaciens DnaJ (AgtDnaJ) was used as a model heterologous expression system in this study. AgtDnaJ was able to replace the lack of two E coli Hsp40s in vivo, DnaJ and CbpA, whereas AgtDnaJ(H33Q) was unable to. AgtDnaJ-based chimeras containing the swapped J-domains of similar type-II Hsp40 proteins, namely Hsj1Agt and Pfj4Agt, were also able to replace these in E. coli OD259. Conserved J-domain amino acids were identified and were substituted in these chimeras. Of these mutant proteins, Hsj IAgt(L8A), Hsj1Agt(R24A), Hsj1Agt(H31Q), Pfj4Agt(L 11A) and Pfj4Agt(H34Q) were not able to replace the E. coli Hsp40s, whilst Pfj4Agt(Y8A) and Pfj4Agt(R27A) were only able to partially replace them. This shows the leucine of helix I and the histidine of the loop region are key in the in vivo function of both proteins and that the arginine of helix II is key for Hsj1a. The histidine-tagged Hsj1a protein was also successfully purified from the heterologous system. The in vitro stimulated ATPase activity of human Hsp70 by Hsj1a was found to be approximately 14 nmol Pí[subscript]/min/mg, and yet not stimulated by Pfj4, suggesting a possible species-specific interaction is occurring.
319

Characterisation of the J domain aminoacid residues important for the interaction of DNAJ-like proteins with HSP70 chaperones

Hennessy, Fritha January 2004 (has links)
The 70 kDa heat shock proteins (Hsp70s) are vital for normal protein folding, as they stabilise the unfolded state of nascent polypeptides, allowing these sufficient time to attain a correct tertiary structure. Hsp70s are aided by the DnaJ-like family of proteins, which interact with Hsp70s in order to enhance the chaperone activity of these proteins. DnaJ-like proteins contain a J domain, a seventy amino acid domain consisting of four α-helices, which is defined by the presence of an invariant tripeptide of histidine, proline and aspartic acid (HPD motif). This motif is key to the interaction between DnaJ-like proteins and Hsp70s. This thesis has focused on determining the presence of other conserved residues in the J domain and their role in mediating the interaction of DnaJ-like proteins with partner Hsp70s. DnaJ-like proteins from Agrobacterium tumefaciens RUOR were isolated and used as a model system. A. tumefaciens DnaJ (Agt DnaJ) was able to replace the lack of E. coli DnaJ in an E. coli null mutant strain, however, additional A. tumefaciens DnaJ-like proteins Agt DjC1/DjlA, Agt DjC2 and Agt DjC5 were unable to complement for the lack of E. coli DnaJ. Replacement of the Agt DnaJ J domain with J domains from these proteins resulted in non-functional chimeric proteins, despite some sequence conservation. The kinetics of the basal specific ATPase activity of Agt DnaK, and its ability to have this activity stimulated by Agt DnaJ and Agt DnaJ-H33Q were also investigated. Stimulation of the ATPase activity by Agt DnaJ ranged between 1.5 to 2 fold, but Agt DnaJ-H33Q was unable to stimulate the basal ATPase activity. Conserved amino acids in the J domain were identified in silico, and these residues were substituted in the J domain of Agt DnaJ. The ability of these derivative proteins to replace E. coli DnaJ was investigated. Alterations in the HPD motif gave rise to proteins unable to complement for lack of E. coli DnaJ, consistent with literature. Agt DnaJ-R26A was unable to replace E. coli DnaJ suggesting that Arg26 could be key to the interaction with partner Hsp70s. Agt DnaJ-D59A was unable to replace E. coli DnaJ; substitutions in Asp59 have not previously been shown to impact on the function of DnaJ. Substituting Arg63 in Agt DnaJ abrogated the levels of complementation. Substitution of several structural residues was also found to disrupt the in vivo function of Agt DnaJ suggesting that the maintenance of the structural integrity of the J domain was important for function. This study has identified a number of residues critical to the structure and function of the J domain of Agt DnaJ, and potentially of general importance as molecular determinants for DnaJ-Hsp70 interaction.
320

Biochemical characterization of plasmodium falciparum heat shock protein 70

Matambo, Tonderayi Sylvester January 2004 (has links)
Plamodium falciparum heat shock protein (PfHsp70) is believed to be involved in the cytoprotection of the malaria parasite through its action as a molecular chaperone. Bioinformatic analysis reveal that PfHsp70 consists of the three canonical Hsp70 domains; an ATPase domain of 45 kDa, Substrate binding domain of 15 kDa and a C-terminal domain of 10 kDa. At the C-terminus there is a GGMP repeat motif that is commonly found in Hsp70s of parasitic origins. Plasmodium falciparum genome is 80% A-T rich, making it difficult to recombinantly express its proteins in Escherhia coli (E. coli) as a result of rare codon usage. In this study we carried out experiments to improve expression in E. coli by inserting the PfHsp70 coding region into the pQE30 expression vector. However multiple bands were detected by Western analysis, probably due to the presence of rare codons. The RIG plasmid, which encodes tRNAs for rare codons in particular Arg (AGA/AGG), Ile (AUA) and Gly (GGA) was engineered into the E. coli strain resulting in production of full length PfHsp70. Purification was achieved through Ni²⁺ Chelating sepharose under denaturing conditions. PfHsp70 was found to have a very low basal ATPase activity of 0.262 ± 0.05 nmoles/min/mg of protein. In the presence of reduced and carboxymethylated lactalbumin (RCMLA) a 11-fold increase in ATPase activity was noted whereas in the presence of both RCMLA and Trypanosoma cruzi DnaJ (Tcj2) a 16-fold was achieved. For ATP hydrolysis kcat value of 0.003 min⁻¹ was obtained whereas for ADP release a greater kcat value of 0.8 min⁻¹ was obtained. These results indicated that rate of ATP hydrolysis maybe the rate-determining step in the ATPase cycle of PfHsp70.

Page generated in 0.075 seconds