• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 87
  • 30
  • 15
  • 7
  • 7
  • 4
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 245
  • 245
  • 36
  • 35
  • 30
  • 30
  • 27
  • 24
  • 24
  • 24
  • 24
  • 23
  • 21
  • 19
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

Insight into the mitochondrial apoptotic pathway : The interplay of the pro-apoptotic Bax protein with oxidized phospholipids and its counterplayer, the pro-survival Bcl-2 protein

Wallgren, Marcus January 2012 (has links)
Apoptosis plays a crucial role in multicellular organisms by preserving tissue homeostasis and removing harmful cells. The anti-apoptotic B-cell CLL/lymphoma 2 (Bcl-2) and the pro-apoptotic Bcl-2-associated X protein (Bax) act as major regulators of the mitochondrial apoptotic pathway. Activation of Bax via stress signals causes its translocation to the mitochondrial outer membrane (MOM). There, Bax forms homo-oligomeric pores, leading to the release of apoptogenic factors, caspase activation and ultimately cell death. However, the underlying mechanism for the recruitment and pore forming activity of Bax is still not elucidated. Nevertheless, the mitochondrial membrane system seems to play an active and crucial role, presumably being directly involved in the onset of the mitochondrial apoptosis. Since the formation of reactive oxygen species (ROS) is a common stress signal and one of the hallmarks of the mitochondrial apoptosis, direct damage can occur to these membranes by the generation of oxidized phospholipids (OxPls), whose presence can crucially influence the pro-apoptotic action of Bax there. To better understand the impact of OxPls on membranes as well as their potential role in the mitochondrial apoptotic process, defined OxPl species were incorporated into phospholipid vesicles and studied with various biophysical techniques. Differential scanning calorimetry (DSC) and solid state nuclear magnetic resonance (NMR) spectroscopy were used to gain insight into changes in membrane properties in the presence of OxPls. In addition to circular dichroism (CD) spectroscopy, DSC and solid state NMR were furthermore performed to elucidate the impact of OxPls on Bax-membrane interactions. The occurrence of OxPls gave rise to dramatic changes in membrane organization and dynamics, manifested as lateral phase separation into OxPl-rich and -poor domains and modified hydration at the membrane interface. The presence of OxPls also had a great impact on the interaction between Bax and mitochondria-mimicking vesicles, strongly promoting the association of the protein with the membrane. At the MOM, Bax is believed to be inhibited by Bcl-2. How this inhibition occurs is still a mystery due to the lack of biophysical information on Bcl-2, in particular on the full-length protein variant. Since Bcl-2 is also one of the main culprits in the progression of various forms of cancer, knowledge of the structural and mechanistic properties of the full-length protein is essential for a fundamental understanding of its function at a molecular level. To this end, a method for the production of full-length Bcl-2 was developed. By performing cell-free protein synthesis, preparative amounts of the protein were obtained, which enabled a biophysical characterization of the putative interaction between Bax and Bcl-2 using CD and fluorescence spectroscopy. A protocol for the reconstitution of Bcl-2 into proteoliposomes was also developed, promising for future studies of the full-length protein in its native membrane environment; a prerequisite to fully understand its pro-survival functions as well as providing crucial information for the design of novel anti-cancer drugs.
152

Mechanism and Regulation of Initiation of Protein Synthesis in Eubacteria / Regleringen av proteinsyntesens initiering i Eubacteria och dess mekanistiska förklaring

Antoun, Ayman January 2005 (has links)
Initiation of protein synthesis in E.coli involves several steps, which lead to the formation of the first peptide bond. This process requires three initiation factors: IF1, IF2 and IF3. Using a novel technique of combined light scattering and stopped-flow, we elucidated the importance of IF2•GTP conformation for the recruitment of 50S to 30S pre-initiation complex. Moreover, GTP hydrolysis is essential for IF2 release and later binding of ternary complex. Interestingly, a switch in IF2 affinity to G-nucleotides is induced during 30S pre-initiation complexes formation. We found that IF1, previously with unknown functions in vitro, increases the rate of naked 70S dissociation by a factor 80 and acts as a fidelity factor in preventing 70S formation containing elongator tRNA instead of fMet-tRNAfMet. We showed that RRF/EFG/IF3 split both naked and post-termination complexes while IF1/IF3 split only naked ribosomes. The mechanisms of action of RRF/ EFG, the order of their binding to 70S, as well as, the three different conformation of EF-G on the ribosomes are emphasized. Interestingly, 70S formation rate is dependent on the concentration of IF3 and not linear with 50S subunits concentration. We demonstrated that the rate-limiting step in 70S formation is IF3 dissociation from 30S complexes. The interplay between initiation factors in the rate and accuracy of protein synthesis was thoroughly studied. Using fMet-tRNAfMet (initiator tRNA), Met-tRNAfMet (non-formylated initiator tRNA) and Phe-tRNAPhe (elongator tRNA), we showed that the major player in the accuracy is IF2 through recognizing the formyl group on fMet-tRNAfMet, while IF3 acts by increasing both the on- and off-rate of tRNA from 30S pre-initiation complexes. Collectively, these novel results describe a comprehensive model of initiation of protein synthesis. In this model, initiation factors increase the rate of fMet-tRNAfMet binding to 30S subunits, subsequently; the stabilization of fMet-tRNAfMet by IF2 increases the rate of IF3 dissociation. Later, IF2 in GTP conformation allows 50S docking to 30S pre-initiation complex free of IF3 followed by GTP hydrolysis allowing IF2 release for ternary complex to bind and start elongation of protein synthesis.
153

Macrolide Antibiotics in Bacterial Protein Synthesis / Makrolidantibiotika i Bakteriell Proteinsyntes

Lovmar, Martin January 2005 (has links)
Macrolides are a large group of clinically relevant antibiotics that inhibit protein synthesis by binding to the large ribosomal subunit in the peptide exit tunnel, close to the peptidyl transferase center (PTC). We have shown that the peptide length of the resulting peptidyl-tRNA drop-off products is proportional to the distance between the PTC and the respective macrolide in the tunnel. This indicates that macrolides act by sterically blocking the nascent peptide exit path. A substantial amount of read-through into full-length product was observed for some macrolides and depends on the relation between the dissociation rate constants for peptidyl-tRNA and the macrolide, respectively. The dissociation rate constant for josamycin is 60 times lower than the dissociation rate constant for erythromycin, which explains why no read-through is seen for josamycin in contrast to erythromycin. Macrolides do not compete with binding of ternary complexes, hence they are non-competitive inhibitors. However, the text-book description is not valid for macrolide antibiotics, and we show that this is due to the equilibrium assumption generally used to describe non-competitive inhibitors. Our results suggest that a more thorough mechanistic investigation is required to classify inhibitors than what has been proposed previously. Further, we have examined the phenomenon of peptide mediated resistance to macrolides. Our results show that expression of a resistance peptide increases the dissociation rate constant for erythromycin. In addition, we have examined the accuracy of protein synthesis on three different levels: (i) How do the three initiation factors accomplish fast and accurate initiation of protein synthesis, (ii) how does proof-reading work on the isoleucyl-tRNA synthetase, and (iii) what is the accuracy in the tRNA selection and how is it accomplished? Our data propose a change of the view on all these mechanisms. In conclusion this thesis presents new results on protein synthesis, macrolide antibiotics and macrolide resistance.
154

Regeneration in the adult brain after focal cerebral ischemia : exploration of neurogenesis and angiogenesis

Jiang, Wei January 2006 (has links)
Background: Ischemic stroke ranks as the third major cause of clinical mortality and the leading cause of handicap in adults. Each year, stroke occurs in about 30,000 Swedes. The severity of an acute ischemic stroke depends mainly on the degree and duration of local cerebral blood flow (lCBF) reduction. Prompt reperfusion improves neurological deficits, spontaneous electrical activity, energy metabolism, cerebral protein synthesis (CPS), and tissue repair, among which cell proliferation (neurogenesis, gliosis) and revascularization (angiogenesis) may have important functional and therapeutic implications. Aims of the thesis: (1) To establish the photothrombotic ring stroke(PRS) model with late spontaneous reperfusion in adult mice; (2) To explore angiogenesis and neurogenesis in adult brain after focal cerebral ischemia. Materials and Methods: The PRS model in C57 BL adult mice and the middle cerebral artery suture occlusion (MCAO) model in adult Wistar rats were used. The 5-bromodeoxyuridine (BrdU) was delivered into animal after stroke induction to label DNA duplication. CBF, CPS and adenosine triphosphate (ATP) were measured by laser-Doppler flowmetry (LDF), [14C]–Iodoantipyrine and [3H]-Leucine double tracer autoradiography, and bioluminescence, respectively. Immunocytochemistry / immunofluoresence were performed to detect different proteins. The cell marker colocalization was analyzed by three-dimension (3-D) confocal. The cell counting was performed with a stereological counting system. Results: The PRS model was established in adult mice by irradiating the exposed skull with a 514.5 nm argon laser ring beam (3 mm diameter, 0.21 mm thick) at an intensity of 0.65 W/cm2 for 60s, with concurrent erythrosin B (4.25 mg/kg) intravenous infusion for 15s. The central cortical region within the ring locus was progressively encroached by an annular ring-shaped perfusion deficit, where lCBF LDF declined promptly to 43% of the baseline value at 30 min post irradiation. The lCBF-IAP amounted to 46-17-58 ml/100g/min, where CPS varied from 57-38-112% at 4h-48h-7days post ischemia. ATP declined at 4h, achieved its maximum level at 48h and was markedly reduced at 7 days postischemia. Morphologically, at 4h some neurons in the region at-risk appeared swollen, at 48h the majority were severely swollen, eosinophilic and pyknotic. Tissue morphology became partly restored at 7 days post stroke, when numerous cortical cells were immunolabeled by BrdU or the mitosis-specific marker phosphorylated histone H3 (Phos-H3). Some of these cells were even doubly immunopositive to the neuron-specific marker Neu N and the astrocyte marker GFAP, as analyzed by 3-D confocal. In adult rats exposed to MCAO, widespread BrdU-immunolabeled cells appeared in the cortex, ipsilateral striatum and dentate gyrus of the hippocampus. Some of which were doubleimmunolabeled by the neuron specific markers Map-2, β-tubulin III and Neu N as analyzed by 3-D confocal. As early as 24h postischemia, BrdU-immunopositive endothelial cells were aligned as microvessels, some of which exhibited distinguishable lumens in the ischemic boundary zone, where VEGF-A, B, C proteins and their receptors flt-1, fik-1, flt-4 were overexpressed at 72h after MCAO. Conclusion: PRS model in adult mice elicits a dynamic deterioration and then restoration of local CBF, CPS, ATP and tissue morphology in the spontaneously reperfused cerebral cortex at 7d after stroke, where cortical neurogenesis and gliosis occurred. In adult rats with MCAO, neurogenesis occurred at 30 and 60d in the penumbral cortex and striatum. Angiogenesis occurred as early as 24h, which contributed to the spontaneous reperfusion frequently observed in this setting of acute ischemic stroke.
155

Mechanisms of Adaptation to Deformylase Inhibitors

Zorzet, Anna January 2010 (has links)
Antibiotic resistance is a growing problem on a global scale. Increasing numbers of bacteria resistant toward one or multiple antibiotics could return us to the high mortality rates for infectious diseases of the pre-antibiotic era. The need for development of new classes of antibiotics is great as is increased understanding of the mechanisms underlying the development of antibiotic resistance. We have investigated the emergence of resistance to peptide deformylase inhibitors, a new class of antibiotics that target bacterial protein synthesis. The fitness of resistant mutants as well as their propensity to acquire secondary compensatory mutations was assessed in order to gain some insight into the potential clinical risk of resistance development. Most of this work was done in the bacterium Salmonella typhimurium, due to the availability of excellent genetic tools to study these phenomena. In addition, we have studied the bacterium Staphylococcus aureus as peptide deformylase inhibitors have been shown to have the greatest effect on Gram-positive organisms. In the course of this work we also examined the mechanistic aspects of translation initiation. Using a cell-free in vitro translation system we studied the effects of various components on translation initiation. These results have been combined with results obtained from resistant and compensated bacterial strains in vivo to gain new insights into the mechanisms of translation initiation.
156

Influence of Insulin Resistance on Contractile Activity-Induced Anabolic Response of Skeletal Muscle

Nilsson, Mats I. 2009 December 1900 (has links)
Although the long-term therapeutic benefits of exercise are indisputable, contractile activity may induce divergent adaptations in insulin-resistant vs. insulin-sensitive skeletal muscle. The purpose of this study was to elucidate if the anabolic response following resistance exercise (RE) is altered in myocellular sub-fractions in the face of insulin resistance. Lean (Fa/?) and obese (fa/fa) Zucker rats were assigned to sedentary and RE groups and engaged in either cage rest or four lower-body RE sessions over an 8-d period. Despite obese Zucker rats having significantly smaller hindlimb muscles when compared to age-matched lean rats, basal 24-h fractional synthesis rates (FSR) of mixed protein pools were near normal in distally located muscle groups (gastrocnemius, plantaris, and soleus) and even augmented in those located more proximally (P<0.05; quadriceps). Although 2 x 2 ANOVA indicated a significant main effect of phenotype on mixed FSR in gastrocnemius and soleus (P < 0.05), phenotypic differences were partially accounted for by an exercise effect in the lean phenotype. Interestingly, obese rats exhibited a significant suppression of myofibrillar FSR compared to their lean counterparts (P<0.05; gastrocnemius), while synthesis rates of mitochondrial and cytosolic proteins were normal (gastrocnemius and quadriceps), suggesting a mechanism whereby translation of specific mRNA pools encoding for metabolic enzymes may be favored over other transcripts (e.g., contractile proteins) to cope with nutrient excess in the insulin-resistant state. Immunoblotting of the cytosolic fraction in gastrocnemius muscle indicated an augmented phosporylation of eIF4EBP1 (+ 9%) and p70s6k (+85%) in obese vs. lean rats, but a more potent baseline inhibition of polypeptide-chain elongation as evidenced by an increased phospho/total ratio of eEF2 (+78%) in the obese phenotype. Resistance exercise did not improve synthesis rates of myofibrillar, cytosolic, or mitochondrial proteins to the same extent in obese vs. lean rats, suggesting a desensitization to contractile-induced anabolic stimuli in the insulin-resistant state. We conclude that insulin resistance has diverse effects on protein metabolism, which may vary between muscle groups depending on fiber type distribution, location along the proximodistal body axis, and myocellular sub-fraction, and may blunt the anabolic response to voluntary resistance exercise.
157

Cinko jonų apsauginio poveikio kepenų transliacijos sistemai įvertinimas esant toksiniam kadmio jonų poveikiui / Evaluation of protective effects of zinc ions on liver translation system in the present of toxic cadmium ions effects

Šlapikaitė, Laura 16 June 2008 (has links)
Sunkieji metalai yra vieni didžiausių ekologinių nuodų. Kadangi apsinuodijimų sunkiaisiais metalais dažnis tebėra didelis, prevencinės strategijos bei veiksmingo gydymo poreikis išlieka aktualūs. Savo eksperimentais mes siekėme įvertinti apsauginį cinko jonų poveikį baltymų biosintezės sistemai bei svarbiausiems jos komponentams (tRNR ir aminoacil-tRNR-sintetazėms) esant slopinančiam kadmio jonų poveikiui. Eksperimentai atlikti su baltosiomis laboratorinėmis pelėmis. Cinko apsauginio poveikio įvertinimui, baltymų biosintezės intensyvumas pelių kepenyse vertintas po 0,5 LD50 CdCl2 (1,6 mg Cd2+ vienam kg kūno masės) ir/arba 0,3 LD50 ZnSO4 (3,1 mg Zn2+ vienam kg kūno masės) tirpalų sušvirkštimo į laboratorinių pelių pilvo ertmę. Baltymų biosintezės intensyvumas pelių organuose nustatytas praėjus 2, 8 ir 24 val. po metalų sušvirkštimo, pagal radioaktyviai žymėto [14C]-leucino įjungimą į naujai susintetintus peptidus ir baltymus. tRNRLeu ir leucyl-tRNR sintetazių aktyvumas nustatytas vykstant reakcijai su [14C]-leucinu. Gauti rezultatai parodė, jog 2 val. po CdCl2 sušvirkštimo, cinko jonai apsaugojo baltymus sintezuojančią sistemą nuo toksinio kadmio poveikio. Praėjus 8 val. po šių abiejų metalų sušvirkštimo, cinko jonai iš dalies normalizavo baltymų biosintezę, tačiau praėjus 24 val., baltymų biosintezės intensyvumas išliko tokio paties aktyvumo, kaip ir kadmiu paveiktose pelėse. Vadinasi, praėjus ilgesniam laikui (24 val.), cinko jonai neapsaugo kepenų transliacijos... [toliau žr. visą tekstą] / The aim of this study was to evaluate protective effects of zinc ions on the total protein synthesis in mouse liver and key components of liver translation machinery (tRNR ir aminoacil-tRNR synthetases) in the present of toxic cadmium ions effects. Experiments were done on white mice using intraperitoneal injections of 0,5 LD50 CdCl2 solution (1,6 mg Cd2+ per 1 kg of body mass) and/or 0,3 LD50 ZnSO4 (3,1 mg Zn2+ per 1 kg of body mass). Protein synthesis was evaluated by incorporation of 14C-labelled leucine into newly synthesized peptides and proteins after 2, 8 and 24 hours of intoxication. Activities of tRNALeu and leucyl-tRNA synthetase were measured by an aminoacylation reaction using 14C-labelled leucine. The data showed that at the 2nd h after CdCl2 injection, Zn2+ abolished deleterious effect of Cd2+ on the protein synthesis in the liver. Although pronounced activation of the protein synthesis was observed after 8 h of intoxication with either Cd2+ or Zn2+, this effect was lower in the presence of both ions. At the 24th h the protein synthesis was as active as in the liver of Cd-treated mice. Thus, Zn2+ can counteract Cd-induced inhibition of protein synthesis in mice liver only at the early stage of Cd2+ intoxication (at the 2nd h). Zn2+ abolished deleterious effect of Cd2+ on the activity of leucyl-tRNA synthetase within 24 h of mice intoxication with CdCl2. In vitro conditions, Zn2+ increased the acceptor activity of leucyl-tRNA synthetase only in low (1... [to full text]
158

Removal and Replacement of Ribosomal Proteins : Effects on Bacterial Fitness and Ribosome Function

Tobin, Christina January 2011 (has links)
Protein synthesis is a complex process performed by sophisticated cellular particles known as ribosomes. Although RNA constitutes the major structural and functional component, ribosomes from all kingdoms contain an extensive array of proteins with largely undefined functional roles. The work presented in this thesis addresses ribosomal complexity using mutants of Salmonella typhimurium to examine the physiological effects of ribosomal protein (r-protein) removal and orthologous replacement on bacterial fitness and ribosome function. The results of paper I demonstrate that removal of small subunit protein S20 conferred two independent translation initiation defects: (i) a significant reduction in the rate and extent of mRNA binding and (ii) a drastic decrease in the yield of 70S complexes caused by an impairment in subunit association. The topographical location of S20 in mature 30S subunits suggests that these perturbations are the result of improper orientation of helix 44 of the 16S rRNA when S20 is absent. In paper II we show that the major functional impairment associated with loss of large subunit protein L1 manifested as an increase in free ribosomal subunits at the expense of translationally active 70S particles. Furthermore, the formation of free ribosomal subunits was imbalanced suggesting that L1 is required to suppress degradation or promote formation of 30S subunits. Compensatory evolution revealed that mutations in other large subunit proteins mitigate the cost of L1 removal, in one case seemingly via an increase in 70S complex formation. As shown in paper III, the large fitness costs associated with complete removal of r-proteins is in contrast to the generally mild costs of orthologous protein replacement, even in the absence of a high degree of homology to the native protein. This clearly demonstrates the robustness and plasticity of the ribosome and protein synthesis in general and it also implies that functional constraints are highly conserved between these proteins. The findings of paper III also allowed us to examine the barriers that constrain horizontal gene transfer and we find that increased gene dosage of the sub-optimal heterologous protein may be an initial response to stabilize deleterious transfer events. Overall the results highlight the requirement of r-proteins for the maintenance of ribosomal structural integrity.
159

Synthesis of Methylene Blue Analogues as Multifunctional Radical Quenchers, Synthesis of Unnatural Amino Acids and Their Ribosomal Incorporation into Proteins

January 2016 (has links)
abstract: The energy required in a eukaryotic cell is provided by mitochondria. Mitochondrial electron transport chain (ETC) coupled with oxidative phosphorylation generates ATP. During electron transport, electron leakage from the ETC produces reactive oxygen species (ROS). In healthy cells, there are preventive and defense mechanisms in place to manage ROS. Maintaining a steady balance of ROS is very important because overproduction of ROS can lead to several pathological conditions. There are several strategies to prevent ROS production. Addition of external antioxidants is widely used among them. Discussed in the first part of Chapter 1 is the mitochondrial ETC, ROS production and antioxidant strategies. The second part of Chapter 1 is concerned with ribosomal protein synthesis in bacteria. Ribosome, the organelle that synthesizes proteins with exceptional fidelity, has a strong bias for α-L-amino acids. It has been demonstrated that reengineering of the peptidyltransferase center (PTC) of the ribosome could enable the incorporation of both α-D-amino acids and β-amino acids into full length protein. Oxidative stress is a common cause of various neurological disorders such as Alzheimer’s disease and Parkinson’s disease. Antioxidative strategies are used widely for the treatment of these disorders. Although several antioxidants demonstrated positive results in vitro as well as in in vivo models, none of them have been effective in clinical settings. Hence, there is an ongoing search for effective neuroprotective drugs. Described in Chapter 2 is the synthesis and biological evaluation of several methylene blue analogues as potentially effective antioxidants for the treatment of pathologies related to oxidative stress. In Chapter 3, the synthesis and ribosomal incorporation of several rationally designed dipeptidomimetic analogues are discussed. The dipeptidomimetic analogues are structurally similar to the GFP chromophore and, therefore, highly fluorescent. In addition, the backbone of the dipeptidomimetic analogues resemble the peptide backbone of a dipeptide, due to which they can be incorporated into protein by modified ribosomes selected for the incorporation of dipeptides. Discussed in Chapter 4 is the synthesis of the pdCpA derivatives of several β-amino acids. The pdCpA derivatives were ligated to tRNA-COH and were used as probes for studying the regio- and stereoselectivity of modified ribosomes. / Dissertation/Thesis / Doctoral Dissertation Chemistry 2016
160

Influência de nitrato encapsulado e enxofre na dieta sobre metabolismo e emissão de metano em bovinos / Influence of encapsulated nitrate and sulfur in the diet on metabolism and methane emission in cattle

Rebelo, Lucas Rocha [UNESP] 19 June 2017 (has links)
Submitted by LUCAS ROCHA REBELO (lucas-rebelo@hotmail.com) on 2017-07-07T17:01:11Z No. of bitstreams: 1 Lucas R. Rebelo, 2017 (Dissertação V. Definitiva).pdf: 2280665 bytes, checksum: b29a6bac1e5b9d5f3d59ba95d2fa0e55 (MD5) / Approved for entry into archive by Monique Sasaki (sayumi_sasaki@hotmail.com) on 2017-07-13T17:51:27Z (GMT) No. of bitstreams: 1 Lucas R. Rebelo, 2017 (Dissertação V. Definitiva).pdf: 2280665 bytes, checksum: b29a6bac1e5b9d5f3d59ba95d2fa0e55 (MD5) / Made available in DSpace on 2017-07-13T17:51:27Z (GMT). No. of bitstreams: 1 Lucas R. Rebelo, 2017 (Dissertação V. Definitiva).pdf: 2280665 bytes, checksum: b29a6bac1e5b9d5f3d59ba95d2fa0e55 (MD5) Previous issue date: 2017-06-19 / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / Este estudo objetivou avaliar o efeito da substituição da fonte de proteína verdadeira e da ureia por nitrato encapsulado (En) e enxofre (S) elementar sobre consumo, digestibilidade, parâmetros ruminais, eficiência de síntese de proteína microbiana e emissão de CH4 em bovinos Nelore. Foram utilizados cinco novilhos Nelore (352.7 ± 38.4 kg PV) canulados no rumen, e distribuídos em um delineamento em quadrado latino 5 × 5 (5 tratamentos e 5 períodos, 21 dias cada). O volumoso utilizado foi feno de Tifton 85 e o concentrado basal foi composto por milho, farelo de soja, e suplemento mineral comercial. Ureia, En e S foram adicionados para compor demais dietas. Os tratamentos foram: farelo de soja (SBM) como tratamento controle; ureia (U); U mais S elementar (US); nitrato encapsulado (EN); e EN mais S elementar (ENS). O En foi incluído nos tratamentos EN e ENS em 2% da MS (1,42% de NO3 - ânion), enquanto que a inclusão de ureia nos tratamentos U e US foi de 0,8% na MS da dieta. A inclusão de S nos tratamentos U e EN foi em 0,24% da MS, e a relação N:S foi reduzida de 8:1 para 4:1 com a adição de S. O En foi incluído gradualmente de 0,5% até 2% da MS da dieta. Os contrastes ortogonais para avaliar os efeitos de tratamento foram: SBM vs. EN + ENS; U + US vs. EN + ENS; U vs. US; e EN vs. ENS. Os novilhos apresentaram baixos níveis de MetHb (média de 1,1%) a medida em que a quantidade de En foi aumentada. O consumo de OM e NDF foram menores (P ≤ 0,01) para os animais alimentados com En comparado à SBM. A digestibilidade da DM, OM, e GE foram maiores (P ≤ 0,01) quanto fornecido En comparado à ureia. O pH ruminal foi maior (P = 0,01) e N-NH3 foi menor (P = 0,01) para animais recebendo En na dieta comparado à ureia. Comparado à ureia, o fornecimento de En causou redução (P = 0,01) na proporção de propionato, assim como aumento (P ≤ 0,03) na proporção de acetato e na relação acetato:propionato. O consumo de N foi menor (P ≤ 0,07) em animais alimentados com En comparado à SBM e ureia. O N retido (g N/d) foi menor (P = 0,01) com dietas com En comparado à SBM e ureia. Nitrogênio microbiano (MN; g MN/d) tendeu a aumentar (P = 0,06) com a inclusão de En comparado à SBM, e foi aumentado (P ≤ 0,04) pela adição de S elementar à dietas com NNP. O fornecimento de dietas com En aumentou (P ≤ 0,01) MN quando em proporção à ingestão de PB (CPI; g MN/kg CPI) e aumentou (P = 0,02) a eficiência de síntese de MN com base na ingestão de OM digestível (DOMI; g MN/kg DOMI) comparado à SBM, assim como tendeu a aumentar (P = 0,09) g MN/kg DOMI comparado à ureia. A adição de S elementar às dietas com NNP tendeu a aumentar (P ≥ 0,05) g MN/kg CPI, e aumentou (P = 0,04) g MN/kg DOMI quando incluído na dieta EN. Animais alimentados com En tiveram redução (P = 0,02) na emissão de CH4 em cerca de 31,2 g CH4/d, e tenderam a reduzir (P = 0,06) a emissão de CH4 em g CH4/kg DMI e como % da GEI, quando comparados à SBM. Portanto, En mais S elementar em substituição parcial à proteina verdadeira da ração ou substituindo totalmente a ureia pode otimizar a eficiência de síntese de proteína microbiana e concomitantemente reduzir a emissão de CH4 por bovinos Nelore. / The objective of this study was to investigate the replacement of true protein source as well as the conventional NPN source (urea) by encapsulated NO3 - (En) plus elemental sulfur (S) on microbial protein synthesis efficiency, and CH4 emission in Nellore beef cattle. Five ruminally-cannulated Nellore steers (352.7 ± 38.4 kg BW) were used in a 5 × 5 Latin square design with 5 periods of 21 d each. Tifton 85 hay was used as forage and the basal concentrate consisted of corn, soybean meal, and commercial mineral supplement (50:50 wt/wt, forage:concentrate). Urea, En and S were added to compose the other diets. The treatments were: true protein from soybean meal as control (SBM); urea (U); U plus elemental S (US); encapsulated NO3 - (EN); and EN plus elemental S (ENS). En was included in 2% on dietary DM (1.42% NO3 - anion), while the inclusion of urea in U and US diets was 0.8% on dietary DM. The inclusion of S for U and EN diets was 0.24% on dietary DM, and the N:S ratio was reduced from 8:1 to 4:1 with the addition of S. En was gradually included from 0.5 to 2% on dietary DM by 0.5% every 4 d. The orthogonal contrasts for specific partitioning of treatment effects were: SBM vs. EN + ENS; U + US vs. EN + ENS; U vs. US; and EN vs. ENS. Steers displayed adequate MetHb levels as dietary En content increased. Organic matter and aNDF intake were smaller (P ≤ 0.01) for animals fed En diets compared to SBM. Digestibility of DM, OM, and GE were greater (P ≤ 0.01) when fed En diets compared to urea. Ruminal pH was greater (P = 0.01) and ruminal NH3-N was smaller (P = 0.01) for animals fed En diets compared to urea. Compared to urea, En supply resulted in lower propionate proportion (P = 0.01), but increased (P ≤ 0.03) acetate proportion and acetate:propionate ratio. Nitrogen intake was smaller (P ≤ 0.07) with En supply compared to SBM and urea. Retained N (g N/d) for animals fed En diets was smaller (P = 0.01) compared to SBM and urea. Microbial N (MN; g MN/d) tended to increase (P = 0.06) with En inclusion compared to SBM, and was increased (P ≤ 0.04) by the addition of elemental S to NPN diets. Encapsulated NO3 - diets supply increased (P ≤ 0.01) MN as a proportion of CPI (g MN/kg CPI), increased (P = 0.02) MN efficiency based on digestible OM intake (DOMI; g MN/kg DOMI) compared to SBM, and as well tended to increase (P = 0.09) g MN/kg DOMI compared to urea. The addition of elemental S to NPN diets tended to increase (P ≥ 0.05) g MN/kg CPI, and increased (P = 0.04) g MN/kg DOMI when included in EN. Animals fed En diets decreased (P = 0.02) CH4 emission by 31.2 (g CH4/d), and tended to decrease (P = 0.06) CH4 emission (g CH4/kg DMI, and CH4 as % of GEI) when compared to SBM. Thus, En plus elemental S as a dietary additive replacing part of true protein of the ration or totally urea can optimize microbial protein synthesis efficiency and concomitantly decrease CH4 emission by Nellore beef cattle. / FAPESP: 2016/01562-0

Page generated in 0.0815 seconds