• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 2
  • 1
  • Tagged with
  • 19
  • 19
  • 8
  • 7
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Computational Studies of Protein Folding Assistance and Conformational Pathways of Biological Nanomachines

Smith, Nathan B. January 2015 (has links)
No description available.
12

Protein Folding and Unfolding on the Millisecond Time Scale using Contained-Electrospray Ionization

Miller, Colbert 28 December 2016 (has links)
No description available.
13

Coarse-grain modeling of proteins : mechanics, dynamics and function / Modèles gros-grain des protéines : mécanique, dynamique et fonction

Ceres, Nicoletta 16 March 2012 (has links)
Les protéines sont des molécules flexibles, qui accomplissent une variété de tâches cellulaires à travers des mouvements mécaniques et des changements conformationnels encodés dans leur structure tridimensionnelle. Parmi les approches théoriques qui contribuent à une meilleure compréhension de la relation entre structure, mécanique, dynamique et fonction des protéines, les modèles gros-grains sont un outil très puissant. Ils permettent d’intégrer des informations structurales et dynamiques à un coût computationnel réduit, car le traitement explicite des degrés de liberté moins importants est supprimé. Dans le cadre de cette thèse, des études comparatives rapides de la flexibilité et de la mécanique des protéines ont été menées en se servant du simple modèle gros-grains de Réseau Élastique. La dépendance des résultats de la conformation de départ, ainsi que une liberté dynamique de la chaine principale plutôt limitée, imposée par l’approximation harmonique, nous ont motivé à développer une nouvelle approche, permettant une exploration plus extensive de l’espace conformationnel. Les efforts ont conduit à PaLaCe, modèle gros-grains qui permet des changements majeurs de la structure secondaire, tout en gardant la spécificité de la séquence des acides aminés grâce à une représentation à basse résolution. En utilisant PaLaCe nous avons simulé deux processus impliquant la plasticité protéique: le dépliement du domaine I27 de la protéine musculaire titine et la dynamique à l’équilibre autour de la structure native de deux enzymes homologues adaptées à des températures différentes. Les résultats obtenus concordent avec les données expérimentales et les résultats issus de modèles tout-atom déjà publiés. PaLaCe s’avère donc être un modèle fiable, avec des temps de calcul restreints par rapport aux modèles tout-atome, tout en conservant un bon niveau de détail. Il offre ainsi la possibilité d’effectuer une recherche systématique sur les liens entre mécanique, dynamique et fonction des protéines / Proteins are flexible molecules, which accomplish a variety of cellular tasks through mechanical motions and conformational fluctuations encoded in their three-dimensional structure. Amongst the theoretical approaches contributing to a better understanding of the relationship between protein structure, mechanics, dynamics and function, coarse-grain models are a powerful tool. They can be used to integrate structural and dynamic information over broad time and size scales at a low computational cost, achieved by averaging out the less important degrees of freedom. In this work, fast comparative studies of protein flexibility and mechanics have been performed with the simple coarse-grain Elastic Network Model. However, the dependency of the results on the starting conformation, and the rather constrained backbone dynamics imposed by the harmonic approximation, motivated the development of a new approach, for a more extensive exploration of conformational space. These efforts led to the PaLaCe model, designed to allow significant changes in secondary structure, while maintaining residue specificity despite a lower-level resolution. Using PaLaCe, we were able to reproduce two processes involving protein plasticity: the mechanical unfolding of the I27 domain of the giant muscle protein titin and the near-native dynamics of two homologous enzymes adapted to work at different temperatures. Agreement with experimental data and results from published atomistic models demonstrate that PaLaCe is a reliable, sufficiently accurate, but computationally inexpensive approach. It therefore opens the doors for a systematic investigation of the link between protein dynamics/mechanics and function
14

Simulações computacionais de desenovelamento de proteína e complexação de ligantes com amostragem aumentada / Computer simulations of protein unfolding and ligand binding with enhanced sampling

Alves, Ariane Ferreira Nunes 23 November 2017 (has links)
Simulações moleculares podem fornecer informações e detalhes mecanísticos que são difíceis de obter de experimentos. No entanto, fenômenos bioquímicos como formação de complexos proteína-ligante e desenovelamento de proteína são lentos e difíceis de amostrar na escala de tempo geralmente atingida por simulações de dinâmica molecular (MD) convencionais. Esses fenômenos moleculares foram estudados aqui pela combinação de simulações de MD com diversos métodos e aproximações para aumentar a amostragem configuracional: método de energia de interação linear (LIE), a aproximação de ensemble ponderado (WE) e dinâmica molecular dirigida (SMD). Uma equação foi parametrizada para prever afinidades entre pequenas moléculas e proteínas baseada na aproximação LIE, que foca a amostragem computacional nos estados complexado e não-complexado do ligante. A flexibilidade proteica foi introduzida usando ensembles de configurações obtidos de simulações de MD. Diferentes esquemas de média foram testados para obter afinidades totais de complexos proteína-ligante, revelando que muitas configurações de complexo contribuem para as afinidades de proteínas flexíveis, enquanto as afinidades de proteínas rígidas são dominadas por uma configuração de complexo. O mutante L99A da lisozima T4 (T4L) é provavelmente a proteína mais frequentemente usada para estudar complexação de ligantes. Estruturas cristalográficas mostram que a cavidade de ligação artificial criada pela mutação é pouco acessível, portanto movimentos proteicos ou uma respiração conformacional são necessários para permitir a entrada e saída de ligantes. Simulações de MD foram combinadas aqui com a aproximação de WE para aumentar a amostragem de eventos infrequentes de saída do benzeno de T4L. Quatro possíveis caminhos foram encontrados e movimentações de alfa-hélices e cadeias laterais envolvidas na saída do ligante foram caracterizadas. Os quatro caminhos correspondem a túneis da proteína previamente observados em simulações de MD longas de T4L apo, sugerindo que a heterogeneidade de caminhos ao longo de túneis intrínsecos é explorada por pequenas moléculas para sair de cavidades de ligação enterradas em proteínas. Experimentos de microscopia de força atômica revelaram informações detalhadas do desenovelamento forçado e da estabilidade mecânica da rubredoxina, uma proteína ferro-enxofre simples. O desenovelamento completo da rubredoxina envolve a ruptura de ligações covalentes. Portanto, o processo de desenovelamento foi simulado aqui por simulações de SMD acopladas a uma descrição clássica da dissociação de ligações. A amostragem de eventos de desenovelamento forçado foi aumentada pelo uso de velocidades rápidas de esticamento. Os resultados foram analisados usando um modelo teórico válido para regimes de desenovelamento forçado lentos e rápidos. As simulações revelaram que mudanças no ponto de aplicação de força ao longo da sequência da rubredoxina levam a diferentes mecanismos de desenovelamento, caracterizados por variáveis graus de rompimento de ligações de hidrogênio e estrutura secundária da proteína. / Molecular simulations may provide information and mechanistic insights that are difficult to obtain from experiments. However, biochemical phenomena such as ligand-protein binding and protein unfolding are slow and hard to sample on the timescales usually reached by conventional molecular dynamics (MD) simulations. These molecular phenomena were studied here by combining MD simulations with several methods or approximations to enhance configurational sampling: linear interaction energy (LIE) method, weighted ensemble (WE) approach and steered molecular dynamics (SMD). An equation was parametrized to predict affinities between small molecules and proteins based on the LIE approximation, which focus computational sampling in ligand bound and unbound states. Protein flexibility was introduced by using ensembles of configurations obtained from MD simulations. Different averaging schemes were tested to obtain overall affinities for ligand-protein complexes, revealing that many bound configurations contribute to affinities for flexible proteins, while affinities for rigid proteins are dominated by one bound configuration. T4 lysozyme (T4L) L99A mutant is probably the protein most often used to study ligand binding. Crystal structures show the artificial binding cavity created by the mutation has low accessibility, so protein movements or conformational breathing are necessary to allow the entry and egress of ligands. MD simulations were combined here with the WE approach to enhance sampling of infrequent benzene unbinding events from T4L. Four possible pathways were found and motions on alpha-helices and side chains involved in ligand egress were characterized. The four pathways correspond to protein tunnels previously observed in long MD simulations of apo T4L, suggesting that pathway heterogeneity along intrinsic tunnels is explored by small molecules to egress from binding cavities buried in proteins. Previous atomic force microscopy experiments revealed detailed information on the forced unfolding and mechanical stability of rubredoxin, a simple iron-sulfur protein. Complete unfolding of rubredoxin involves rupture of covalent bonds. Thus, the unfolding process was simulated here by SMD simulations coupled to a classical description of bond dissociation. Sampling of forced unfolding events was increased by using fast pulling velocities. Results were analyzed using a theoretical model valid for both slow and fast forced unfolding regimes. Simulations revealed that changing the points of force application along the rubredoxin sequence leads to different unfolding mechanisms, characterized by variable degrees of disruption of hydrogen bonds and secondary protein structure.
15

Molekulové mechanismy homocystinurie: prostorové uspořádání lidské cystathionin β-synthasy / Molecular mechanisms in homocystinuria: spatial arrangement of human cystathionine β-synthase

Hnízda, Aleš January 2012 (has links)
Protein misfolding is considered to be the major pathogenic mechanism in homocystinuria due to cystathionine beta-synthase (CBS) deficiency. The aim of this work was to study molecular mechanisms underlying protein misfolding of CBS mutants. Firstly, we studied spatial arrangement of normal human CBS protein. Using data from differential covalent labeling of solvent-exposed aminoacid residues, we identified interdomain contact area between the catalytic core and the regulatory domain in human CBS, and we subsequently generated the structural model of the full-length CBS. In the next step, we studied evolutionary divergence of CBS protein structures. We performed phylogenetic analysis that revealed unique spatial arrangement of CBS enzyme in nematodes; the domain architecture of CBS in Caenorhabditis elegans was studied experimentally in more detail. Finally, we determined conformational properties of a representative set of human CBS mutants that exhibited in various extent affected formation of tetramers and decreased catalytic activity. Using thermolysin-based proteolytic techniques for analysis of nine mutants expressed in E.coli, we found that an unfolded structure is a common intermediate occurring in CBS misfolding. The importance of protein unfolding for pathogenesis of CBS deficiency was...
16

Simulações computacionais de desenovelamento de proteína e complexação de ligantes com amostragem aumentada / Computer simulations of protein unfolding and ligand binding with enhanced sampling

Ariane Ferreira Nunes Alves 23 November 2017 (has links)
Simulações moleculares podem fornecer informações e detalhes mecanísticos que são difíceis de obter de experimentos. No entanto, fenômenos bioquímicos como formação de complexos proteína-ligante e desenovelamento de proteína são lentos e difíceis de amostrar na escala de tempo geralmente atingida por simulações de dinâmica molecular (MD) convencionais. Esses fenômenos moleculares foram estudados aqui pela combinação de simulações de MD com diversos métodos e aproximações para aumentar a amostragem configuracional: método de energia de interação linear (LIE), a aproximação de ensemble ponderado (WE) e dinâmica molecular dirigida (SMD). Uma equação foi parametrizada para prever afinidades entre pequenas moléculas e proteínas baseada na aproximação LIE, que foca a amostragem computacional nos estados complexado e não-complexado do ligante. A flexibilidade proteica foi introduzida usando ensembles de configurações obtidos de simulações de MD. Diferentes esquemas de média foram testados para obter afinidades totais de complexos proteína-ligante, revelando que muitas configurações de complexo contribuem para as afinidades de proteínas flexíveis, enquanto as afinidades de proteínas rígidas são dominadas por uma configuração de complexo. O mutante L99A da lisozima T4 (T4L) é provavelmente a proteína mais frequentemente usada para estudar complexação de ligantes. Estruturas cristalográficas mostram que a cavidade de ligação artificial criada pela mutação é pouco acessível, portanto movimentos proteicos ou uma respiração conformacional são necessários para permitir a entrada e saída de ligantes. Simulações de MD foram combinadas aqui com a aproximação de WE para aumentar a amostragem de eventos infrequentes de saída do benzeno de T4L. Quatro possíveis caminhos foram encontrados e movimentações de alfa-hélices e cadeias laterais envolvidas na saída do ligante foram caracterizadas. Os quatro caminhos correspondem a túneis da proteína previamente observados em simulações de MD longas de T4L apo, sugerindo que a heterogeneidade de caminhos ao longo de túneis intrínsecos é explorada por pequenas moléculas para sair de cavidades de ligação enterradas em proteínas. Experimentos de microscopia de força atômica revelaram informações detalhadas do desenovelamento forçado e da estabilidade mecânica da rubredoxina, uma proteína ferro-enxofre simples. O desenovelamento completo da rubredoxina envolve a ruptura de ligações covalentes. Portanto, o processo de desenovelamento foi simulado aqui por simulações de SMD acopladas a uma descrição clássica da dissociação de ligações. A amostragem de eventos de desenovelamento forçado foi aumentada pelo uso de velocidades rápidas de esticamento. Os resultados foram analisados usando um modelo teórico válido para regimes de desenovelamento forçado lentos e rápidos. As simulações revelaram que mudanças no ponto de aplicação de força ao longo da sequência da rubredoxina levam a diferentes mecanismos de desenovelamento, caracterizados por variáveis graus de rompimento de ligações de hidrogênio e estrutura secundária da proteína. / Molecular simulations may provide information and mechanistic insights that are difficult to obtain from experiments. However, biochemical phenomena such as ligand-protein binding and protein unfolding are slow and hard to sample on the timescales usually reached by conventional molecular dynamics (MD) simulations. These molecular phenomena were studied here by combining MD simulations with several methods or approximations to enhance configurational sampling: linear interaction energy (LIE) method, weighted ensemble (WE) approach and steered molecular dynamics (SMD). An equation was parametrized to predict affinities between small molecules and proteins based on the LIE approximation, which focus computational sampling in ligand bound and unbound states. Protein flexibility was introduced by using ensembles of configurations obtained from MD simulations. Different averaging schemes were tested to obtain overall affinities for ligand-protein complexes, revealing that many bound configurations contribute to affinities for flexible proteins, while affinities for rigid proteins are dominated by one bound configuration. T4 lysozyme (T4L) L99A mutant is probably the protein most often used to study ligand binding. Crystal structures show the artificial binding cavity created by the mutation has low accessibility, so protein movements or conformational breathing are necessary to allow the entry and egress of ligands. MD simulations were combined here with the WE approach to enhance sampling of infrequent benzene unbinding events from T4L. Four possible pathways were found and motions on alpha-helices and side chains involved in ligand egress were characterized. The four pathways correspond to protein tunnels previously observed in long MD simulations of apo T4L, suggesting that pathway heterogeneity along intrinsic tunnels is explored by small molecules to egress from binding cavities buried in proteins. Previous atomic force microscopy experiments revealed detailed information on the forced unfolding and mechanical stability of rubredoxin, a simple iron-sulfur protein. Complete unfolding of rubredoxin involves rupture of covalent bonds. Thus, the unfolding process was simulated here by SMD simulations coupled to a classical description of bond dissociation. Sampling of forced unfolding events was increased by using fast pulling velocities. Results were analyzed using a theoretical model valid for both slow and fast forced unfolding regimes. Simulations revealed that changing the points of force application along the rubredoxin sequence leads to different unfolding mechanisms, characterized by variable degrees of disruption of hydrogen bonds and secondary protein structure.
17

Molekulové mechanismy homocystinurie: prostorové uspořádání lidské cystathionin β-synthasy / Molecular mechanisms in homocystinuria: spatial arrangement of human cystathionine β-synthase

Hnízda, Aleš January 2012 (has links)
Protein misfolding is considered to be the major pathogenic mechanism in homocystinuria due to cystathionine beta-synthase (CBS) deficiency. The aim of this work was to study molecular mechanisms underlying protein misfolding of CBS mutants. Firstly, we studied spatial arrangement of normal human CBS protein. Using data from differential covalent labeling of solvent-exposed aminoacid residues, we identified interdomain contact area between the catalytic core and the regulatory domain in human CBS, and we subsequently generated the structural model of the full-length CBS. In the next step, we studied evolutionary divergence of CBS protein structures. We performed phylogenetic analysis that revealed unique spatial arrangement of CBS enzyme in nematodes; the domain architecture of CBS in Caenorhabditis elegans was studied experimentally in more detail. Finally, we determined conformational properties of a representative set of human CBS mutants that exhibited in various extent affected formation of tetramers and decreased catalytic activity. Using thermolysin-based proteolytic techniques for analysis of nine mutants expressed in E.coli, we found that an unfolded structure is a common intermediate occurring in CBS misfolding. The importance of protein unfolding for pathogenesis of CBS deficiency was...
18

Higher-Order Unfolding of Peri/Centric Satellite Heterochromatin is an Early and Consistent Event in Cell Senescence: A Dissertation

Swanson, Eric C. 18 December 2014 (has links)
Cellular senescence is thought to play an essential role in many biological functions including tumor suppression and organismal aging. Senescent cells, which are permanently removed from the cell cycle, can be found both in vivo in many different tissue types and in vitro within cultures of non-immortalized cells. Despite their inability to proliferate, these cells persist and remain metabolically active for indefinite periods of time. This physiologic process occurs in response to a variety of cellular insults including oxidative stress, shortened telomeres, constitutive oncogene expression, and DNA damage, and can be initiated by upregulation of one of the two known senescent pathways, involving p16/Rb or p53/p21. The senescent cell phenotype is also characterized by changes to cell and nuclear morphology and to the secretory profile of the cell. Related to changes in nuclear morphology, epigenetic modifications to the packaging of DNA are thought to be key to the initiation and maintenance of the senescence program. While a large number of earlier studies focused on the findings that senescent cells gain regions of condensed heterochromatin, often in the form of Senescent Associated Heterochromatin Foci (SAHF), this thesis work shows that there is a marked loss of heterochromatin in the peri/centromeric regions of the genome. In fact, both α-satellite and satellite II sequences across the genome distend in a striking and unanticipated fashion; this can be readily visualized by fluorescence in situ hybridization (FISH) as their structure changes from a condensed spot to highly elongated and fine thread-like signals. We have termed this exceptional decondensation of constitutive heterochromatin Senescence Associated Distension of Satellites (SADS). Importantly, a series of experiments shows that SADS is both a consistent and an early event in the cell senescence process, which occurs as a result of every senescence induction method examined. We also observed that this distension was characteristic of both human and murine cells and in vivo in human benign Prostatic Intraepithelial Neoplasia (PIN) tissue. Furthermore, unlike SAHF formation, SADS can occur due to the activation of either of the two senescence pathways, p16/Rb or p53/p21. Additionally, the cytological dimensions of the thread-like satellite signals indicates that SADS represents “unraveling” of DNA on an unprecedented scale. Thus, it was surprising that this event was not facilitated by changes to several canonical histone modifications associated with condensed heterochromatin, namely H3K9Me3, H3K27Me3, or H3K4Me3, nor is it caused by loss of DNA methylation. Consequently, we believe that this marked distension of satellite DNA is due to changes in higher-order folding of the chromatin fiber. This is important for understanding fundamental events in the cell senescence process, but also provides a unique system for study of chromatin packaging that may provide new insights into the organization of DNA well beyond nucleosome packaging and the ten nanometer fiber. In fact, initial super resolution images of SADS suggest that the satellite sequences may be organized into domains or “globules”. Hence, we suggest that the changes to satellite sequence packaging may be facilitated by changes to higher-order nuclear structural proteins, such as LaminB1, which is reduced in senescent cells. Finally, this work provides analysis of the literature and preliminary experiments to consider the possibility that there are increased levels of cell senescence in Down syndrome (trisomy 21) cells. As individuals with Down syndrome (DS) experience many manifestations of premature aging (including early-onset Alzheimer’s Disease), have a resistance to solid tumor formation, are more susceptible to oxidative stress, and are trisomic for several genes implicated in causing senescence, our analysis provides plausibility for the hypothesis that accelerated rates of senescence may play a significant role in DS physiology. We also provide results of preliminary studies and outline the next steps for experimentation, using DS fibroblasts and a unique genetically engineered DS iPS cell system. As a final note, the quantification of cell senescence in trisomic versus disomic cells for these experiments relies substantially on the new single-cell marker of senescence discovered and established by this theses work, the Senescence-Associated Distension of Satellites.
19

Effets dynamiques et conformationnels sur le rôle de transport des albumines sériques / Dynamics and conformational effects on the transport role of serum albumins

Paris, Guillaume 05 June 2014 (has links)
L’albumine sérique humaine (HSA) est une protéine connue pour ses propriétés de transport exceptionnelles et son contenu élevé en ponts disulfure. L’étude de sa dynamique conformationnelle représente un défi important dans la compréhension de ses fonctions physiologiques. Le but de notre travail a été d’étudier cette dynamique conformationnelle et de comprendre le rôle des ponts disulfure dans le maintien de la structure native de la protéine. Notre analyse est basée sur des simulations de dynamique moléculaire couplées à des analyses par composantes principales. Outre la validation de la méthode de simulation les résultats fournissent de nouveaux éclairages sur les principaux effets de la réduction des ponts disulfure dans les albumines sériques. Les processus de dépliement/repliement protéique ont été détaillés. La prédiction de la structure réduite d’équilibre a également fait l’objet d’une attention particulière. Une étude détaillée de la dynamique conformationnelle globale de la protéine ainsi que celle des deux sites principaux de complexation a été effectuée. D’éventuels effets allostériques entre ces deux sites ont été recherchés. Les résultats théoriques obtenus ont été discutés avec les données expérimentales disponibles / Human serum albumin (HSA) is a protein known for its exceptional transport properties and its high content of disulfide bridges. The study of the conformational dynamics represents a major challenge in the comprehension of its physiological functions. The aim of our work was to study the conformational dynamics and to understand the roleof disulfide bonds in the stability of the native protein structure. Our analysis is based on simulations of molecular dynamics coupled with principal component analysis. Beyond the validation of the simulation method, the results provide new insights on the main effects of the disulfide bonds reduction in serum albumins. Protein unfolding/refolding processes were detailed. A special attention is paid to the prediction of the reduced structure at the equilibrium. A detailed study of the global protein conformational dynamics as well as the two main binding sites were performed. Possible allosteric effects between these two sites were researched. The theoretical results have been discussed with the available experimental data

Page generated in 0.1247 seconds