Spelling suggestions: "subject:"proteininteraction"" "subject:"proteininteraktion""
121 |
Discovery of New Protein-DNA and Protein-Protein Interactions Associated With Wood Development in Populus trichocarpaPetzold, Herman E. III 09 November 2017 (has links)
The negative effects from rising carbon levels have created the need to find alternative energy sources that are more carbon neutral. One such alternative energy source is to use the biomass derived from forest trees to fulfill the need for a renewable alternative fuel. Through increased understanding and optimization of regulatory mechanisms that control wood development the potential exists to increase biomass yield. Transcription factors (TFs) are DNA-binding regulatory proteins capable of either activation or repression by binding to a specific region of DNA, normally located in the 5-prime upstream promoter region of the gene. In the first section of this work, six DNA promoters from wood formation-related genes were screened by the Yeast One-Hybrid (Y1H) assay in efforts to identify novel interacting TFs involved in wood formation. The promoters tested belong to genes involved in lignin biosynthesis, programmed cell death, and cambial zone associated TFs. The promoters were screened against a mini-library composed of TFs expressed 4-fold or higher in differentiating xylem vs phloem-cambium. The Y1H results identified PtrRAD1 with interactions involving several of the promoters screened. Further testing of PtrRAD1 by Yeast Two-Hybrid (Y2H) assay identified a protein-protein interaction (PPI) with poplar DIVARACATA RADIALIS INTERACTING FACTOR (DRIF1). PtrDRIF1 was then used in the Y2H assay and formed PPIs with MYB/SANT domain proteins, homeodomain family (HD) TFs, and cytoskeletal-related proteins. In the second section of this work, PPIs involving PtrDRIF1s' interaction partners were further characterized. PtrDRIF1 is composed of two separate domains, an N-terminal MYB/SANT domain that interacted with the MYB/SANT domain containing PtrRAD1 and PtrDIVARICATA-like proteins, and a C-terminal region containing a Domain of Unknown Function 3755 (DUF3755). The DUF3755 domain interacted with HD family members belonging to the ancient WOX clade and Class II KNOX domain TFs. In addition, PtrDRIF1 was able to form a complex between PtrRAD1 and PtrWOX13c in a Y2H bridge assay. PtrDRIF1 may function as a regulatory module linking cambial cell proliferation, lignification, and cell expansion during growth. Combined, these findings support a role for PtrDRIF1 in regulating aspects of wood formation that may contribute to altering biomass yield. / Ph. D. / Trees are unique among plants since they have extremely long life spans and the ability to generate large quantities of woody biomass. The woody biomass derived from forest trees can function to provide renewable energy in the form of biofuels. The process of wood formation is complex and requires coordinated activation of genes involved in multiple metabolic pathways. Transcription factors (TFs) are DNA-binding regulatory proteins capable of either activation or repression by binding to a specific region of DNA. These protein-DNA interactions regulate gene expression during plant growth and development. In this study, new regulators of genes known to be involved in wood formation were identified using the Yeast One-Hybrid (Y1H) assay. One of the proteins identified, PtrRAD1 had not been previously linked to wood formation and was a candidate for further characterization. Further testing of PtrRAD1 by the Yeast Two-Hybrid (Y2H) assay resulted in identification of a protein-protein interaction with Populus trichocarpa DIVARICATA RADIALIS INTERACTING FACTOR (DRIF1). PtrDRIF1 was then used in the Y2H assay to identify numerous interacting proteins, in addition to those reported previously in other species. Further characterization of PtrDRIF1, identified an N-terminal region capable of forming interactions with MYB/SANT domain proteins, and C-terminal region that interacted with homeodomain proteins. PtrRAD1, PtrDRIF1, and the homeodomain containing PtrWOX13c were able to form a complex in an Y2H-bridge assay. Combined, these findings support a potential role for PtrDRIF1 in regulating wood polarity, wood formation, and stem cell proliferation.
|
122 |
Development and Application of a quantitative Mass spectrometry based Platform for Thermodynamic Analysis of Protein interaction NetworksTran, Duc T. January 2013 (has links)
<p>The identification and quantification of protein-protein interactions in large scale is critical to understanding biological processes at a systems level. Current approaches for the analysis of protein -protein interactions are generally not quantitative and largely limited to certain types of interactions such as binary and strong binding interactions. They also have high false-positive and false-negative rates. Described here is the development of and application of mass spectrometry-based proteomics metehods to detect and quantify the strength of protein-protein and protein-ligand interactions in the context of their interaction networks. Characterization of protein-protein and protein-ligand interactions can directly benefit diseased state analyses and drug discovery efforts. </p><p>The methodologies and protocols developed and applied in this work are all related to the Stability of Unpurified Proteins from Rates of amide H/D Exchange (SUPREX) and Stability of Protein from Rates of Oxidation (SPROX) techniques, which have been previously established for the thermodynamic analysis of protein folding reactions and protein-ligand binding interactions. The work in this thesis is comprised of four parts. Part I involves the development of a Histidine Slow H/D exchange protocol to facility SURPEX-like measurements on the proteomic scale. The Histidine Slow H/D exchange protocol is developed in the context of selected model protein systems and used to investigate the thermodynamic properties of proteins in a yeast cell lysate. </p><p>In Part II an isobaric mass tagging strategy is used in combination with SPROX (i.e., a so-called iTRAQ-SPROX protocol) is used to characterize the altered protein interactions networks associated with lung cancer. This work involved differential thermodynamic analyses on the proteins in two different cell lines, including ADLC-5M2 and ADLC-5M2-C2. </p><p>Parts III and IV of this thesis describe the development and application of a SPROX protocol for proteome-wide thermodynamic analyses that involves the use of Stable Isotope Labeling by Amino acid in cell Culture (SILAC) quantitation. A solution-based SILAC-SPROX protocol is described in Part III and a SILAC-SPROX protocol involving the use of cyanogen bromide and a gel-based fractionation step is described in Part IV. The SILAC-SPROX-Cyanogen bromide (SILAC-SPROX-CnBr) protocol is demonstrated to significantly improve the peptide and protein coverage in proteome-wide SPROX experiments. Both the SILAC-SPROX and SILAC-SPROX-CnBr porotocols were used to characterize the ATP binding properties of yeast proteins. Ultimately, the two protocols enabled 526 yeast proteins to be assayed for binding to AMP-PNP, an ATP mimic. A total of 140 proteins, including 37 known ATP-binding proteins, were found to have ATP binding interactions.</p> / Dissertation
|
123 |
Critical Assessment of Predicted Interactions at Atomic ResolutionMendez Giraldez, Raul 21 September 2007 (has links)
Molecular Biology has allowed the characterization and manipulation of the molecules of life in the wet lab. Also the structures of those macromolecules are being continuously elucidated. During the last decades of the past century, there was an increasing interest to study how the different genes are organized into different organisms (‘genomes’) and how those genes are expressed into proteins to achieve their functions. Currently the sequences for many genes over several genomes have been determined. In parallel, the efforts to have the structure of the proteins coded by those genes go on. However it is experimentally much harder to obtain the structure of a protein, rather than just its sequence. For this reason, the number of protein structures available in databases is an order of magnitude or so lower than protein sequences. Furthermore, in order to understand how living organisms work at molecular level we need the information about the interaction of those proteins. Elucidating the structure of protein macromolecular assemblies is still more difficult. To that end, the use of computers to predict the structure of these complexes has gained interest over the last decades.
The main subject of this thesis is the evaluation of current available computational methods to predict protein – protein interactions and build an atomic model of the complex. The core of the thesis is the evaluation protocol I have developed at Service de Conformation des Macromolécules Biologiques et de Bioinformatique, Université Libre de Bruxelles, and its computer implementation. This method has been massively used to evaluate the results on blind protein – protein interaction prediction in the context of the world-wide experiment CAPRI, which have been thoroughly reviewed in several publications [1-3]. In this experiment the structure of a protein complex (‘the target’) had to be modeled starting from the coordinates of the isolated molecules, prior to the release of the structure of the complex (this is commonly referred as ‘docking’).
The assessment protocol let us compute some parameters to rank docking models according to their quality, into 3 main categories: ‘Highly Accurate’, ‘Medium Accurate’, ‘Acceptable’ and ‘Incorrect’. The efficiency of our evaluation and ranking is clearly shown, even for borderline cases between categories. The correlation of the ranking parameters is analyzed further. In the same section where the evaluation protocol is presented, the ranking participants give to their predictions is also studied, since often, good solutions are not easily recognized among the pool of computer generated decoys.
An overview of the CAPRI results made per target structure and per participant regarding the computational method they used and the difficulty of the complex. Also in CAPRI there is a new ongoing experiment about scoring previously and anonymously generated models by other participants (the ‘Scoring’ experiment). Its promising results are also analyzed, in respect of the original CAPRI experiment. The Scoring experiment was a step towards the use of combine methods to predict the structure of protein – protein complexes. We discuss here its possible application to predict the structure of protein complexes, from a clustering study on the different results.
In the last chapter of the thesis, I present the preliminary results of an ongoing study on the conformational changes in protein structures upon complexation, as those rearrangements pose serious limitations to current computational methods predicting the structure protein complexes. Protein structures are classified according to the magnitude of its conformational re-arrangement and the involvement of interfaces and particular secondary structure elements is discussed. At the end of the chapter, some guidelines and future work is proposed to complete the survey.
|
124 |
Molecular studies of the Tacaribe virus nucleoprotein (NP) : identification and characterisation of virus-host interactions as novel anti-arenavirus drug targetsMeyer, Bjoern January 2014 (has links)
Arenaviruses cause an estimated 300,000 – 500,000 infections annually. Currently there is no arenavirus-specific antiviral drug available to treat these infections. This study sought to use the non-pathogenic New World arenavirus Tacaribe virus (TCRV) as a model for the pathogenic Junin virus (JUNV) and Machupo virus (MACV) that cause haemorrhagic fevers in South America. TCRV was used to explore three different approaches in the search for an antiviral drug against arenavirus infection targeted specifically against the viral nucleoprotein (NP). Of the four expressed arenaviral proteins, NP is the most abundant and is thought to be of multifunctional nature involved in viral replication, suppression of the innate immune system and viral egress. The approaches to find targets for broad-spectrum anti-arenaviral drugs were high throughput screens (HTS) with purified NP using thermal shift assays, exploring the virus interactions with the innate immune system and identifying virus- host protein-protein interactions. HTS resulted in the identification of two small- molecule compounds, [5-(2-Furyl)thien-2-yl]methanol and cyclosporine A (CsA), showing broad-spectrum activity against arenaviruses. Interferon-stimulated genes (ISGs), such as IFIT3, were identified to reduce viral titres and potential 202 protein- interactions between NP and host cell proteins were identified, of which the interaction with apoptosis-inducing factor 1 (AIF1) was described further. To characterise the importance of these interactions as potential drug targets further, a TCRV reverse genetics system was constructed.
|
125 |
Etude d'enzymes de modification d'ARN impliquées dans la réplication des flavivirus et des coronavirusBouvet, Mickaël 02 December 2011 (has links)
Ce travail de thèse a porté sur l’étude d’activités enzymatiques virales impliquées dans la réplication de deux genres viraux : les Flavivirus et les Coronavirus. Dans un premier temps, nous avons étudié des activités enzymatiques impliquées dans la formation de la structure coiffe des ARNm viraux. En effet, du fait de leur cycle réplicatif cytoplasmique, ces virus n’ont pas accès à la machinerie de formation de la coiffe cellulaire et expriment donc une machinerie dédiée. Le processus canonique de formation de la coiffe fait appel à quatre activités enzymatiques, une ARN 5’-triphosphatase, une guanylyltransférase et deux méthyltransférases.Chez les flavivirus, nous avons développé des outils permettant d’identifier l’activité guanylyltransférase ainsi que des essais enzymatiques nécessaires à la caractérisation des activités méthyltransférases. Ces outils nous ont notamment permis d’évaluer l’effet inhibiteur de molécules choisies par des méthodes de criblages virtuels sur les deux activités méthyltransférases de la protéine NS5 nécessaires à la formation de la coiffe.Chez les coronavirus, nous nous sommes intéressés à une activité méthyltransférase impliquée dans la formation de la coiffe et notamment à sa régulation par un partenaire viral. Nous avons démontré que le processus de méthylation de la coiffe suit un ordre obligatoire, initié par la méthylation de la position N7 par la protéine nsp14. Dans une seconde étape, les structures coiffe-0 (7MeGpppA) sont converties en coiffe-1 (7MeGpppA2’OMe) par la protéine nsp16 en complexe avec nsp10. Nous avons démontré que l’activité 2’O-méthyltransférase portée par la protéine nsp16 nécessite une interaction spécifique avec la protéine nsp10 qui joue probablement un rôle d’échafaudage.Dans un second temps, nous avons démontré que l’activité exoribonucléase portée par la protéine nsp14 est également régulée par la protéine nsp10. La stimulation de l’activité passe par une interaction directe entre les deux protéines et il semble que les surfaces d’interaction de nsp10 avec nsp14 et nsp16 soient chevauchantes. Enfin, la caractérisation de l’activité exoribonucléase confirme la possibilité de son implication dans un mécanisme de réparation des erreurs incorporées lors de la synthèse d’ARN par la polymérase virale. / This work focused on enzymatic activities of two RNA virus genera, Flavivirus and Coronavirus.We first studied the mRNA cap synthesis machinery of these viruses. Indeed, as they replicate in the cytoplasm of the infected cell, these viruses encode their own mRNA cap-forming enzymes. The canonical mechanism of cap synthesis uses four enzymatic activities, a RNA 5’-triphosphatase, a guanylyltransferase and two methyltransferases.We tried to identify the guanylyltransferase activity involved in this process for flaviviruses and we developed enzymatic assays to characterize both guanylyltransferase and methyltransferase activities. We used the methyltransferase assay in order to test the inhibitor effect of molecules, selected by virtual screening, on the methyltransferase activities of the NS5 protein involved in the capping process.Concerning coronaviruses, we first focused on the methyltransferase activities of the nsp14 and nsp16 proteins. We have reconstituted the complete SARS-CoV mRNA cap methylation in vitro. We showed that mRNA cap methylation requires a third viral protein, nsp10, which acts as an essential trigger to complete RNA cap-1 formation. The obligate sequence of methylation events is initiated by nsp14, which first methylates capped RNA transcripts to generate cap-0 7MeGpppA-RNAs. The latter are then selectively 2′O-methylated by the 2′O-methyltransferase nsp16 in complex with its activator nsp10 to give rise to cap-1 7MeGpppA2′OMe-RNAs. Then, we took interest in the exoribonuclease activity of the nsp14 protein and found that this activity is also regulated by the same cofactor, the nsp10 protein. The interaction between the proteins is required to observe the stimulatory effect and it seems that the surface areas of nsp10 interacting with nsp14 and nsp16 overlap. The in vitro characterization of the nuclease activity of nsp14 is according with its potential implication in RNA proofreading mechanism.
|
126 |
Synthesis of peptidomimetics containing bifunctional diketoopiperazine scaffolds and their evaluation as modulators of amyloid-B peptide oligomerization / Synthèse de peptidomimétiques contenant un scaffold dicetopiperazinique bifonctionnel et leur evaluation comme modulateurs de l'agrégation des peptides amyloides betaVahdati, Leïla 26 February 2015 (has links)
La formation des agrégats des peptides et des protéines par l'interaction de feuillets β a de plus en plus attiré l'attention car elle se produit dans de nombreuses maladies humaines généralisées, telles que la sclérose latérale amyotrophique (SLA), la maladie d'Alzheimer (AD), la maladie de Parkinson (PD), les maladies à prions et la maladie de Huntington (HD). La maladie d'Alzheimer est la forme la plus courante de démence qui provoque la perte de la mémoire chez les personnes âgées. En 2013, il y avait 35 millions de personnes souffrant de AD à travers le monde, un chiffre qui devrait doubler d'ici 2050. Etiologiquement ces maladies se manifestent par des dépôts anormaux de protéines, y compris les plaques neuritiques séniles (PNS) et les dégénérescences neurofibrillaires (DNF). L'accumulation extracellulaire d'agrégats insolubles de la protéine β-amyloide (A) conduit à la formation de plaques séniles, tandis que DNF se produisent à l’intérieur des neurones et sont composés par des filaments hélicoidaux appariés de la protéine tau hyperphosphorylée. Les peptides A sont produits en tant que monomères solubles et subissent l'oligomérisation et la formation de fibrilles amyloides par un processus qui n’a pas été complètement clarifié. Il est suggéré que les peptides Aß solubles jouent un rôle important dans la croissance neuronale, la survie et la modulation synaptique, tandis que les oligomères et fibrilles ont des propriétés toxiques. Une nouvelle stratégie thérapeutique vers la prévention ou le traitement de maladies associées à des structures -feuillet et, en particulier, AD, est représentée par la synthèse de mimes de -brins qui peuvent antagoniser la formation ou la reconnaissance de feuillet ß. En fait, dans la maladie d’Alzheimer, le processus d'agrégation des protéines implique une transition de la structure secondaire non ordonnée/α-hélice à une conformation riche en feuillet β, conduisant à la formation de feuillet croisés. Sur la base des quelques données publiées récemment sur des mimes d’épingles et en particulier des structures macrocycliques de Nowick, comme inhibiteurs de l'agrégation des protéines, nous avons supposé qu’une pré-structuration des molécules peptidomimétiques pourrait augmenter leur affinité pour les peptides A et donc augmenter leur activité inhibitrice de l'agrégation. Notre conception vers un mime d’épingle stable, qui pourrait interagir et éventuellement agir en tant que ligand de feuillets β et inhibiteur de l'agrégation, implique l’assemblage d’une dicétopipérazine bifonctionnelle en tant que scaffold , d’un brin peptidomimétique pour stabiliser la formation de feuillets β et enfin d’une séquence peptidique convenable pour la liaison à la protéine. Ces molécules ont montré une interaction avec le peptide Aβ1-42 ainsi qu’une modulation de la cinétique d’agrégation. / The formation of peptide and protein aggregates through the interaction of β-sheets has increasingly drawn attention since it occurs in many widespread human diseases, such as amyotrophic lateral sclerosis (ALS), Alzheimer’s disease (AD), Parkinson's disease (PD), prion diseases, and Huntington's disease (HD). Alzheimer’s disease is the most common form of dementia that causes memory loss in the elderly. In 2013, 35 million people were afflicted with AD worldwide, a number expected to double by 2050. Etiologically, the most common findings are abnormal protein deposits, including senile neuritic plaques (SNPs) and neurofibrillary tangles (NFTs). The extracellular accumulation of insoluble aggregates of β-amyloid protein (Aβ) leads to the formation of senile plaques, whereas NFTs occur intracellulary and are composed of paired helical filaments of hyperphosphorylated tau protein. Aβ peptides are produced as soluble monomers and undergo oligomerization and amyloid fibril formation via an unclear process. It is suggested that soluble A peptides play an important role in neuronal growth, survival, and synaptic modulation, while the oligomers and fibrils have toxic properties. Mimicking -strands to antagonize -sheet formation or recognition represent a new therapeutic strategy toward the prevention or treatment of diseases associated with -sheet structures such as AD. In this pathology, protein aggregation process involves a secondary structure transition from unordered/α-helix to a β-sheet rich conformation, leading to cross β-sheet structure formation. Based on the few recent published data on β-hairpin mimics, in particular on the macrocyclic structures of Nowick, as inhibitors of protein aggregation, we hypothesized that pre-structuring the peptidomimetic molecules might increase their affinity for Aβ peptides and thus increase their aggregation inhibitory activity. Our design towards a stable β-hairpin mimic (Figure 1), which could interact and eventually act as a β-sheet binder and aggregation inhibitor, involved assembling of a bifunctional diketopiperazine scaffold , a peptidomimetic strand to stabilize the formation of β-sheets and finally a suitable peptide sequence for binding to the aggregating protein. These molecules were shown to interact with the native Aβ1-42 peptide and modulate the kinetics of aggregation.
|
127 |
Aprendizado de Máquina e Biologia de Sistemas aplicada ao estudo da Síndrome de Microdeleção 22q11Alves, Camila Cristina de Oliveira. January 2019 (has links)
Orientador: Lucilene Arilho Ribeiro Bicudo / Resumo: A Síndrome de Microdeleção 22q11 (SD22q11), causada por uma deleção de aproximadamente 3Mb na região 22q11, apresenta uma frequencia média de 1 em 4000 a 9800 nascidos vivos sendo considera a síndrome de microdeleção mais frequente e a segunda causa mais comum de atraso no desenvolvimento e de doença congênita grave, após a síndrome de Down. De acordo com o tamanho e a localização da deleção, diferentes genes podem ser afetados e o principal gene considerado como responsável pelos sinais clássicos da síndrome é o TBX1. A SD22q11 caracteriza-se por um espectro fenotípico bastante amplo, com efeitos pleiotrópicos que resultam no acometimento de praticamente todos os órgãos e/ou sistemas, altamente variáveis com mais de 180 sinais clínicos já descritos, tanto físicos como comportamentais. Nesse trabalho aplicamos ferramentas de bioinformática com o intuito de descobrir padrões clínicos e sistêmicos da deleção 22q11, classificando casos sindrômicos em típicos e atípicos e estudando o impacto da deleção em redes de interação proteína-proteína (PPI). Para avaliação dos sinais clínicos que pudessem diferenciar pacientes sindrômicos foi aplicado uma metodologia baseada em aprendizado de máquina para classificar os casos em típico e atípico de acordo com os sinais clínicos através do algoritmo J48 (um algoritmo de árvore de decisão). As árvores de decisão selecionadas foram altamente precisas. Sinais clínicos como fissura oral, insuficiência velofaríngea, atraso no desenvolvimento de ... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: The 22q11 Microdeletion Syndrome (22q11DS), caused by a deletion of approximately 3Mb in the 22q11 region, has an average frequency of 1 in 4000 to 9800 live births and is considered the most frequent microdeletion syndrome and the second most common cause of developmental delay and severe congenital disease after Down syndrome. According to the size and location of the deletion, different genes may be affected and the main gene considered to be responsible for the classic signs of the syndrome is TBX1. 22q11DS is characterized by a very broad phenotypic spectrum with pleiotropic effects that result in the involvement of variable organs and/or systems with more than 180 clinical signs already described, both physical and behavioral. In this work, we applied bioinformatics tools to detect clinical and systemic patterns of 22q11 deletion, classifying typical and atypical syndromic cases, and studying the impact of deletion on protein-protein interaction (PPI) networks. To evaluate clinical signs that could differentiate syndromic patients, a machine-learning based methodology was used to classify the cases into typical and atypical according to the clinical signs through the algorithm J48 (a decision tree algorithm). The selected decision trees were highly accurate. Clinical signs such as oral fissure, velopharyngeal insufficiency, speech and language development delay, specific learning disability, behavioral abnormality and growth delay were indicative for case classification... (Complete abstract click electronic access below) / Mestre
|
128 |
Biochemical and biophysical characterization of 2-oxoacid: ferredoxin oxidoreductase, ferredoxin and their interplay in biological CO2 evolution and fixationLi, Bin 09 October 2018 (has links)
CO2 fixation is a thermodynamically and kinetically challenging process, but nature has its own way of transforming CO2 into diverse organic molecules. Of our particular interest is 2-oxoacid:ferredoxin oxidoreductase (OFOR) that catalyzes the anaerobic, reversible inter-conversion of 2-oxoacids and CO2, making use of a small electron-transfer protein, ferredoxin (Fd), as the redox partner. This dissertation characterizes OFORs and Fds from organisms that exhibit different metabolic patterns and investigates how the interplay of OFOR and Fd could impact the fate of CO2 metabolism, asking the question What controls the catalytic bias of OFOR for CO2 evolution versus fixation? The study of OFORs and Fds from Desulfovibrio africanus and Hydrogenobacter thermophilus through an electrocatalytic assay reveals that the reduction potential of Fd is possibly associated with the biological function of OFOR and that CO2 fixation requires a low-potential electron donor. The Fd from H. thermophilus (HtFd1) is used as a model to probe the factors that govern iron-sulfur cluster potential. The dependence of OFOR activity on Fd potential is systematically studied with HtFd1 and its molecular variants through the electrocatalytic assay and a coupled enzyme assay. The results suggest there is a Fd “potential optimum” for OFOR-catalyzed CO2 fixation. The study of a 2-oxoglutarate:ferredoxin oxidoreductase (OGOR) and three Fds from Magnetococcus marinus MC-1 further highlights other factors such as the intramolecular electron-transfer within Fd and the electrostatic and hydrophobic interactions at the protein-protein interface in determining OFOR-Fd interaction. The characterization of an OGOR from M. marinus MC-1 (MmOGOR) also provides kinetic, structural and spectroscopic details for a CO2-fixing OFOR that contains only one iron-sulfur cluster. Overall, this work furthers the scientific understanding of how nature achieves CO2 fixation through supplying reducing equivalents and with enzymes as efficient catalysts, and how intermolecular electron-transfer mediated by protein-protein interaction could regulate enzyme catalysis. / 2019-10-08T00:00:00Z
|
129 |
Recyclage membranaire : rôle de la protéine MICAL-L1 et de son partenaire PACSINE3 / Membrane recycling : role of MICAL-L1 protein and her partner PACSIN3Sikora, Romain 16 October 2015 (has links)
Le recyclage de récepteurs et de lipides vers la membrane plasmique, est un processus finement régulé, essentiel pour l’homéostasie de la membrane plasmique et pour la migration cellulaire. Il requière l’intervention des petites GTPases de la famille Rabs et leurs effecteurs. La protéine MICAL-L1, effecteur de plusieurs Rabs, comme Rab 8, 11, 13 et 35, a été impliquée dans le recyclage vers la membrane plasmique. Dans cette étude, nous avons identifié une nouvelle interaction entre MICAL-L1 et la PACSINE3, une protéine à domaine F-BAR capable de façonner les membranes intracellulaires et qui contribue à la génération d’endosomes de recyclage tubulaires. MICAL-L1 est nécessaire pour la localisation de la PACSINE3 au niveau des membranes des endosomes. La perturbation du complexe MICAL-L1/PACSINE3 affecte le recyclage du récepteur de la transferrine (TfR) vers la membrane plasmique. Le complexe MICAL-L1/PACSINE3 est associé à des longs tubules membranaires contenant la transferrine comme cargo. La dynamique de ségrégation et de détachement des cargos Tf à partir des tubules contenant MICAL-L1 et PACSINE3, suggère que ce complexe contrôle le tri/adressage des endosomes de recyclage vers la membrane plasmique. Notre travail révèle un nouveau mécanisme de régulation de la voie de recyclage vers la surface cellulaire. / The recycling to the plasma membrane of receptors and lipids is tightly regulated and is essential for PM homeostasis, adhesion and cell migration. It requires small GTPase Rab proteins and their effectors. The MICAL-L1 protein, an effector of several Rabs including Rab 8, 11, 13 and 35, has been shown to play an important role in the recycling. Here, we report a novel interaction between MICAL-L1 and the BAR domain containing protein PACSIN3/Syndapin3 that contributes to generate tubular recycling endosomes. MICAL-L1 is required for the localization of PACSIN3 to endosomal membranes. Importantly, disruption of MICAL-L1/PACSIN3 interaction promotes the transferrin receptor (TfR) delivery back to the plasma membrane. The MICAL-L1/PACSIN3 complex accumulates in elongated tubules that contain transferrin carriers. The dynamic of transferrin positive endosomes segregation from MICAL-L1/PACSIN3 tubules suggests that MICAL-L1/PACSIN3 complex controls TfR recycling endosomes delivery to the plasma membrane. Our data provide novel mechanistic insights on the dynamical regulation of the plasma membrane recycling pathway.
|
130 |
Caracterização da interação entre o regulador espacial MinC e seu alvo FtsZ em Bacillus subtilis / Characterization of interaction between the spatial regulator for bacterial division MinC and its target FtsZ in Bacillus subtilisBlasios Junior, Valdir 14 August 2014 (has links)
A divisão celular bacteriana é orquestrada por FtsZ, uma proteína homóloga à tubulina eucariótica que possui a capacidade de polimerizar e gerar uma estrutura chamada de anel Z. O local onde esta estrutura citoesquelética contrátil é formada determina o futuro sítio de divisão. O complexo MinCD é um dos principais reguladores da posição da divisão, favorecendo a montagem do anel Z precisamente na região medial da bactéria. MinCD age como um inibidor sítio específico da polimerização de FtsZ, atuando preferencialmente nos polos celulares. MinC é a proteína do complexo que atua diretamente sobre FtsZ e inibe sua polimerização. Essa tese elucida a interação entre FtsZ e MinC e sugere o mecanismo exercido por MinC em Bacillus subtilis. Foi triada uma biblioteca de mutantes randômicos de FtsZ para identificação de mutantes resistentes à ação de MinC. Dentre estes, as substituições K243R e D287V, quando caracterizados usando espalhamento de luz e espectroscopia de fluorescência impediram a interação com MinC. Como as mutações estavam localizados em torno das hélices H-9 e H-10 no domínio C-terminal de FtsZ, concluímos que esta região representa o sítio de interação com MinC desta proteína. Como complemento ao mapeamento do sitio de ligação de MinC em FtsZ, identificamos a região de MinC que interage com FtsZ. Para tanto, escolhemos resíduos de MinC para mutagênese e caracterização. A escolha priorizou os resíduos conservados entre espécies Gram-positivas, experimentos de RMN, carga e exposição ao solvente dos mesmos. Dentre os resíduos de MinC mutados que afetaram sua capacidade de inibir a polimerização de FtsZ in vitro foram: Y8 e K12 (β-1), K15 (alça-2), H55 (β-3) , H84 (β-4) e K149 (C-terminal). Sendo assim, podemos concluir que a face de interação para FtsZ em MinC de B. subtilis é a única folha β do domínio N-terminal desta proteína. Com base nos sítios mapeados das duas proteínas experimentalmente, criamos um modelo in silico do complexo MinC-FtsZ por docking molecular. De acordo com o modelo gerado, MinC interage com a porção lateral de polímeros de FtsZ. Isto sugere que MinC atue na inibição da formação de feixes de filamentos de FtsZ, impedindo assim a formação de anéis Z funcionais. Esse mecanismo de ação do sistema Min é diferente do proposto para E. coli, no qual MinC interage com a face de polimerização FtsZ-FtsZ e impede a formação de protofilamentos de FtsZ. / Bacterial cell division is orchestrated by FtsZ, a protein homologous to eukaryotic tubulin that has the ability to polymerize and generate a cytoplasmic structure called the Z ring. The subcellular location where this cytoskeletal structure is formed determines the future division site. The MinCD complex is one of the main regulators of the position of cell division, driving the assembly of Z-ring precisely at the medial region of the cell. MinCD acts as a site-specific inhibitor of FtsZ polymerization, blocking Z ring formation at the cell poles. MinC is the protein of the complex that acts directly on FtsZ and inhibits its polymerization. This thesis elucidates the interaction between FtsZ and MinC and suggests the MinC mechanism in Bacillus subtilis. An ftsZ randomly mutagenized library was screened to identify mutants that are resistant to MinC action. Using right-angle light scattering and fluorescence spectroscopy we showed that substitutions K243R and D287V lost the interaction to MinC. These substituted residues clustered around the H-9 and H-10 helices in the C-terminal domain of FtsZ, thus, we conclude that this region is the binding site for MinC. In addition to mapping the MinC binding site on FtsZ, we also identified the FtsZ binding site in MinC. Based on residue conservation, NMR experiments and exposure to solvent, we chose residues of MinC for mutagenesis and characterization. The substituted residues that di srupted MinC ability to inhibit FtsZ polymerization in vitro were: Y8 and K12 (β-1), K15 (turn-2) , H55 (β-3), H84 (β-4) and K149 (C-terminal). Thus, we conclude that the binding site of MinC for FtsZ is located on the β only sheet at the N-terminal domain of MinC from B. subtilis. Finally, based on the binding sites of the two proteins mapped experimentally, we created a model of the complex between MinC and FtsZ by molecular docking. According to the generated model, MinC interacts with the lateral portion of FtsZ polymers. This indicates that MinC should inhibit assembly of higher order FtsZ polymers, thereby preventing the formation of a functional Z-ring. This mechanism of Min is different from that proposed in E. coli, in which MinC interacts with FtsZ polymerization interface and inhibits FtsZ protofilament formation.
|
Page generated in 0.1235 seconds